Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(10): 7213-7219, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786953

RESUMO

We studied the rotational and translational diffusion of a single gold nanorod linked to a supported lipid bilayer with ultrahigh temporal resolution of two microseconds. By using a home-built polarization-sensitive dark-field microscope, we recorded particle trajectories with lateral precision of 3 nm and rotational precision of 4°. The large number of trajectory points in our measurements allows us to characterize the statistics of rotational diffusion with unprecedented detail. Our data show apparent signatures of anomalous diffusion such as sublinear scaling of the mean-squared angular displacement and negative values of angular correlation function at small lag times. However, a careful analysis reveals that these effects stem from the residual noise contributions and confirms normal diffusion. Our experimental approach and observations can be extended to investigate diffusive processes of anisotropic nanoparticles in other fundamental systems such as cellular membranes or other two-dimensional fluids.


Assuntos
Bicamadas Lipídicas , Nanotubos , Membrana Celular , Difusão , Ouro
2.
Opt Express ; 28(18): 25969-25988, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906875

RESUMO

Interferometric scattering (iSCAT) microscopy is an emerging label-free technique optimized for the sensitive detection of nano-matter. Previous iSCAT studies have approximated the point spread function in iSCAT by a Gaussian intensity distribution. However, recent efforts to track the mobility of nanoparticles in challenging speckle environments and over extended axial ranges has necessitated a quantitative description of the interferometric point spread function (iPSF). We present a robust vectorial diffraction model for the iPSF in tandem with experimental measurements and rigorous FDTD simulations. We examine the iPSF under various imaging scenarios to understand how aberrations due to the experimental configuration encode information about the nanoparticle. We show that the lateral shape of the iPSF can be used to achieve nanometric three-dimensional localization over an extended axial range on the order of 10 µm either by means of a fit to an analytical model or calibration-free unsupervised machine learning. Our results have immediate implications for three-dimensional single particle tracking in complex scattering media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA