Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34983873

RESUMO

Bottom trawling is widespread globally and impacts seabed habitats. However, risks from trawling remain unquantified at large scales in most regions. We address these issues by synthesizing evidence on the impacts of different trawl-gear types, seabed recovery rates, and spatial distributions of trawling intensity in a quantitative indicator of biotic status (relative amount of pretrawling biota) for sedimentary habitats, where most bottom-trawling occurs, in 24 regions worldwide. Regional average status relative to an untrawled state (=1) was high (>0.9) in 15 regions, but <0.7 in three (European) regions and only 0.25 in the Adriatic Sea. Across all regions, 66% of seabed area was not trawled (status = 1), 1.5% was depleted (status = 0), and 93% had status > 0.8. These assessments are first order, based on parameters estimated with uncertainty from meta-analyses; we recommend regional analyses to refine parameters for local specificity. Nevertheless, our results are sufficiently robust to highlight regions needing more effective management to reduce exploitation and improve stock sustainability and seabed environmental status-while also showing seabed status was high (>0.95) in regions where catches of trawled fish stocks meet accepted benchmarks for sustainable exploitation, demonstrating that environmental benefits accrue from effective fisheries management. Furthermore, regional seabed status was related to the proportional area swept by trawling, enabling preliminary predictions of regional status when only the total amount of trawling is known. This research advances seascape-scale understanding of trawl impacts in regions around the world, enables quantitative assessment of sustainability risks, and facilitates implementation of an ecosystem approach to trawl fisheries management globally.


Assuntos
Biota , Ecossistema , Pesqueiros , Animais , Conservação dos Recursos Naturais , Peixes , Geografia , Sedimentos Geológicos , Júpiter , Oceanos e Mares , Dinâmica Populacional
2.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297399

RESUMO

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Assuntos
Pesqueiros/estatística & dados numéricos , Alaska , Animais , Austrália , Biodiversidade , Chile , Ecossistema , Invertebrados/fisiologia , Nova Zelândia , Oceanos e Mares , Alimentos Marinhos/estatística & dados numéricos
3.
Proc Natl Acad Sci U S A ; 114(31): 8301-8306, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716926

RESUMO

Bottom trawling is the most widespread human activity affecting seabed habitats. Here, we collate all available data for experimental and comparative studies of trawling impacts on whole communities of seabed macroinvertebrates on sedimentary habitats and develop widely applicable methods to estimate depletion and recovery rates of biota after trawling. Depletion of biota and trawl penetration into the seabed are highly correlated. Otter trawls caused the least depletion, removing 6% of biota per pass and penetrating the seabed on average down to 2.4 cm, whereas hydraulic dredges caused the most depletion, removing 41% of biota and penetrating the seabed on average 16.1 cm. Median recovery times posttrawling (from 50 to 95% of unimpacted biomass) ranged between 1.9 and 6.4 y. By accounting for the effects of penetration depth, environmental variation, and uncertainty, the models explained much of the variability of depletion and recovery estimates from single studies. Coupled with large-scale, high-resolution maps of trawling frequency and habitat, our estimates of depletion and recovery rates enable the assessment of trawling impacts on unprecedented spatial scales.


Assuntos
Organismos Aquáticos/classificação , Biota/fisiologia , Sedimentos Geológicos/análise , Atividades Humanas , Invertebrados/classificação , Animais , Biodiversidade , Biomassa , Pesqueiros , Peixes , Oceanos e Mares
4.
Ecol Appl ; 25(7): 1997-2010, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591464

RESUMO

Systematic conservation planning has rapidly advanced in the past decade and has been increasingly incorporated in multiple studies and conservation projects. One of its requirements is a quantitative definition of conservation targets. While the Convention on Biological Diversity aims to expand the world's protected area network to 17% of the land surface, in many cases such uniform policy-driven targets may not be appropriate for achieving persistence of various species. Targets are often set arbitrarily, often because information required for the persistence of each species is unavailable or unknown in the focal region. Conservation planners therefore need to establish complementary novel approaches to address the gaps in setting targets. Here, we develop and present a novel method that aims to help guide the selection of conservation targets, providing support for decision makers, planners, and managers. This is achieved by examining the overall flexibility of the conservation network resulting from conservation prioritization, and aiming for greater flexibility. To test this approach we applied the decision support tool Marxan to determine marine conservation priority areas in the eastern Mediterranean Sea as a case study. We assessed the flexibility of the conservation network by comparing 80 different scenarios in which conservation targets were gradually increased and assessed by a range of calculated metrics (e.g., the percentage of the total area selected, the overall connectivity). We discovered that when conservation targets were set too low (i.e., below 10% of the distribution range of each species), very few areas were identified as irreplaceable and the conservation network was not well defined. Interestingly, when conservation targets were set too high (over 50% of the species' range), too many conservation priority areas were selected as irreplaceable, an outcome which is realistically infeasible to implement. As a general guideline, we found that flexibility in a conservation network is adequate when ~10-20% of the study area is considered irreplaceable (selection frequency values over 90%). This approach offers a useful sensitivity analysis when applying target-based systematic conservation planning tools, ensuring that the resulting protected area conservation network offers more choices for managers and decision makers.


Assuntos
Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Biodiversidade , Monitoramento Ambiental/métodos , Israel , Região do Mediterrâneo , Mar Mediterrâneo , Poluição por Petróleo
5.
Conserv Biol ; 29(6): 1573-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26219342

RESUMO

Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks.


Assuntos
Conservação dos Recursos Naturais , Indústria de Petróleo e Gás , Biodiversidade , Ecossistema , Hidrocarbonetos , Oceanos e Mares
6.
Ecol Appl ; 24(5): 1115-30, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154100

RESUMO

Explicitly including cost in marine conservation planning is essential for achieving feasible and efficient conservation outcomes. Yet, spatial priorities for marine conservation are still often based solely on biodiversity hotspots, species richness, and/or cumulative threat maps. This study aims to provide an approach for including cost when planning large-scale Marine Protected Area (MPA) networks that span multiple countries. Here, we explore the incorporation of cost in the complex setting of the Mediterranean Sea. In order to include cost in conservation prioritization, we developed surrogates that account for revenue from multiple marine sectors: commercial fishing, noncommercial fishing, and aquaculture. Such revenue can translate into an opportunity cost for the implementation of an MPA network. Using the software Marxan, we set conservation targets to protect 10% of the distribution of 77 threatened marine species in the Mediterranean Sea. We compared nine scenarios of opportunity cost by calculating the area and cost required to meet our targets. We further compared our spatial priorities with those that are considered consensus areas by several proposed prioritization schemes in the Mediterranean Sea, none of which explicitly considers cost. We found that for less than 10% of the Sea's area, our conservation targets can be achieved while incurring opportunity costs of less than 1%. In marine systems, we reveal that area is a poor cost surrogate and that the most effective surrogates are those that account for multiple sectors or stakeholders. Furthermore, our results indicate that including cost can greatly influence the selection of spatial priorities for marine conservation of threatened species. Although there are known limitations in multinational large-scale planning, attempting to devise more systematic and rigorous planning methods is especially critical given that collaborative conservation action is on the rise and global financial crisis restricts conservation investments.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Peixes , Animais , Espécies em Perigo de Extinção , Mar Mediterrâneo
7.
Mar Environ Res ; 160: 105033, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32907736

RESUMO

Marine ecosystems are complex socio-ecological systems where sustainable solutions can be best gained by satisfying both conservation and socioeconomic demands. Concretely, the Mediterranean Sea is facing a huge demand of resources and marine activities while hosting abundant and unique biodiversity. It is considered an important elasmobranch hotspot where seventy-two elasmobranch species are present in the basin. Despite the recognised importance of elasmobranchs as umbrella species, to date only a small number of marine protected areas have been designated towards their protection. The paucity of spatially-explicit abundance data on elasmobranchs often precludes the designation of these areas to protect these marine predators. Here, we aimed to identify marine areas to protect elasmobranch species by means of a systematic spatial planning approach. We first estimated the spatial distribution of five elasmobranch species (three sharks and two rays) in the western Mediterranean Sea and then applied Marxan decision support tools to find priority marine conservation areas. We found that the five elasmobranchs are distributed in coastal and slope areas of the southern waters of the study area while in the northern region they are abundant in the continental slope and towards offshore waters. Conservation priority areas were identified in the southern part of the western Mediterranean. Adding more complex cost layers and zoning to the analysis did not alter conservation priority areas, confirming such areas are highly consistent and highly important for elasmobranch protection. The marine conservation priority areas identified here can contribute to designate a proactive area-based protection strategy towards elasmobranch conservation, related species and the habitats that they depend in the western Mediterranean Sea.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Tubarões , Animais , Ecossistema , Mar Mediterrâneo
8.
Nat Ecol Evol ; 2(7): 1071-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29784980

RESUMO

The United Nations 2030 Agenda for Sustainable Development calls for urgent actions to reduce global biodiversity loss. Here, we synthesize >44,000 articles published in the past decade to assess the research focus on global drivers of loss. Relative research efforts on different drivers are not well aligned with their assessed impact, and multiple driver interactions are hardly considered. Research on drivers of biodiversity loss needs urgent realignment to match predicted severity and inform policy goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica , Políticas , Pesquisa
9.
PLoS One ; 9(8): e104489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25102177

RESUMO

Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes). We applied the marine zoning decision support tool Marxan to each planning scenario and tested a) the ability of each scenario to reach biodiversity targets, b) the change in opportunity cost and c) the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and economic considerations within a country's territorial waters.


Assuntos
Conservação dos Recursos Naturais , Israel , Mar Mediterrâneo
10.
PLoS One ; 8(10): e76449, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155901

RESUMO

Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Alismatales/fisiologia , Cavernas , Custos e Análise de Custo , Pesqueiros/economia , Geografia , Mar Mediterrâneo , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA