Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Haematologica ; 108(4): 1053-1067, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861015

RESUMO

Although human cell cultures stimulated with dexamethasone suggest that the glucocorticoid receptor (GR) activates stress erythropoiesis, the effects of GR activation on erythropoiesis in vivo remain poorly understood. We characterized the phenotype of a large cohort of patients with Cushing disease, a rare condition associated with elevated cortisol levels. Results from hypercortisolemic patients with active Cushing disease were compared with those obtained from eucortisolemic patients after remission and from volunteers without the disease. Patients with active Cushing disease exhibited erythrocytosis associated with normal hemoglobin F levels. In addition, their blood contained elevated numbers of GR-induced CD163+ monocytes and a unique class of CD34+ cells expressing CD110, CD36, CD133 and the GR-target gene CXCR4. When cultured, these CD34+ cells generated similarly large numbers of immature erythroid cells in the presence and absence of dexamethasone, with raised expression of the GR-target gene GILZ. Of interest, blood from patients with Cushing disease in remission maintained high numbers of CD163+ monocytes and, although their CD34+ cells had a normal phenotype, these cells were unresponsive to added dexamethasone. Collectively, these results indicate that chronic exposure to excess glucocorticoids in vivo leads to erythrocytosis by generating erythroid progenitor cells with a constitutively active GR. Although remission rescues the erythrocytosis and the phenotype of the circulating CD34+ cells, a memory of other prior changes is maintained in remission.


Assuntos
Hipersecreção Hipofisária de ACTH , Policitemia , Humanos , Policitemia/etiologia , Células-Tronco Hematopoéticas/metabolismo , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Dexametasona/farmacologia , Células Cultivadas
2.
IUBMB Life ; 72(1): 131-141, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31749302

RESUMO

In 2002, we discovered that mice carrying the hypomorphic Gata1low mutation that reduces expression of the transcription factor GATA1 in megakaryocytes (Gata1low mice) develop myelofibrosis, a phenotype that recapitulates the features of primary myelofibrosis (PMF), the most severe of the Philadelphia-negative myeloproliferative neoplasms (MPNs). At that time, this discovery had a great impact on the field because mutations driving the development of PMF had yet to be discovered. Later studies identified that PMF, as the others MPNs, is associated with mutations activating the thrombopoietin/JAK2 axis raising great hope that JAK inhibitors may be effective to treat the disease. Unfortunately, ruxolitinib, the JAK1/2 inhibitor approved by FDA and EMEA for PMF, ameliorates symptoms but does not improve the natural course of the disease, and the cure of PMF is still an unmet clinical need. Although GATA1 is not mutated in PMF, reduced GATA1 content in megakaryocytes as a consequence of ribosomal deficiency is a hallmark of myelofibrosis (both in humans and mouse models) and, in fact, a driving event in the disease. Conversely, mice carrying the hypomorphic Gata1low mutation express an activated TPO/JAK2 pathway and partially respond to JAK inhibitors in a fashion similar to PMF patients (reduction of spleen size but limited improvement of the natural history of the disease). These observations cross-validated Gata1low mice as a bona fide animal model for PMF and prompted the use of this model to identify abnormalities that might be targeted to cure the disease. We will summarize here data generated in Gata1low mice indicating that the TGF-ß/P-selectin axis is abnormal in PMF and represents a novel target for its treatment.


Assuntos
Modelos Animais de Doenças , Fator de Transcrição GATA1/fisiologia , Megacariócitos/patologia , Mielofibrose Primária/terapia , Animais , Humanos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Mielofibrose Primária/genética , Mielofibrose Primária/patologia
3.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370646

RESUMO

Prior evidence indicates that the erythroid cellular response to glucocorticoids (GC) has developmental specificity, namely, that developmentally more advanced cells that are undergoing or have undergone fetal to adult globin switching are more responsive to GC-induced expansion. To investigate the molecular underpinnings of this, we focused on the major developmental globin regulator BCL11A. We compared: a) levels of expression and nuclear content of BCL11A in adult erythroid cells upon GC stimulation; b) response to GC of CD34+ cells from patients with BCL11A microdeletions and reduced BCL11A expression, and; c) response to GC of two cellular models (HUDEP-2 and adult CD34+ cells) before and after reduction of BCL11A expression by shRNA. We observed that: a) GC-expanded erythroid cells from a large cohort of blood donors displayed amplified expression and nuclear accumulation of BCL11A; b) CD34+ cells from BCL11A microdeletion patients generated fewer erythroid cells when cultured with GC compared to their parents, while the erythroid expansion of the patients was similar to that of their parents in cultures without GC, and; c) adult CD34+ cells and HUDEP-2 cells with shRNA-depleted expression of BCL11A exhibit reduced expansion in response to GC. In addition, RNA-seq profiling of shRNA-BCL11A CD34+ cells cultured with and without GC was similar (very few differentially expressed genes), while GC-specific responses (differential expression of GILZ and of numerous additional genes) were observed only in controls cells with unperturbed BCL11A expression. These data indicate that BCL11A is an important participant of certain aspects of the stress pathway sustained by GC.

4.
Front Med (Lausanne) ; 10: 1166758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188088

RESUMO

Introduction: Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts. However, although it is well recognized that in mice the nature of the hematopoietic niche change with age or after exposure to inflammatory insults, much work remains to be done to identify changes occurring under these conditions. The dynamic changes occurring in niche/HSC interactions as HSC enter into cycle are also poorly defined. Methods: We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene to establish the feasibility to assess interactions of the HSC with their niche as they cycle. In this model, H2BGFP expression is driven by the TET trans-activator under the control of the human CD34 promoter which in mice is active only in the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer express H2BGFP and loose half of their label every division allowing establishing the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly confocal microscopy methods to determine HSC divisions by hemi-decrement changes in levels of GFP expression. We then tracked the interaction occurring in old mice between the HSC and their niche during the first HSC divisions. Results: We determined that in old mice, most of the HSC are located around vessels, both arterioles which sustain quiescence and self-replication, and venules/sinusoids, which sustain differentiation. After just 1 week of exposure to Doxycycline, great numbers of the HSC around the venules lost most of their GFP label, indicating that they had cycled. By contrast, the few HSC surrounding the arterioles retained maximal levels of GFP expression, indicating that they are either dormant or cycle at very low rates. Conclusion: These results reveal that in old mice, HSC cycle very dynamically and are biased toward interactions with the niche that instructs them to differentiate.

5.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37425686

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disorder with limited therapeutic options. Insufficient understanding of driver mutations and poor fidelity of currently available animal models has limited the development of effective therapies. Since GATA1 deficient megakaryocytes sustain myelofibrosis, we hypothesized that they may also induce fibrosis in lungs. We discovered that lungs from IPF patients and Gata1low mice contain numerous GATA1negative immune-poised megakaryocytes that, in mice, have defective RNA-seq profiling and increased TGF-ß1, CXCL1 and P-selectin content. With age, Gata1low mice develop fibrosis in lungs. Development of lung fibrosis in this model is prevented by P-selectin deletion and rescued by P-selectin, TGF-ß1 or CXCL1 inhibition. Mechanistically, P-selectin inhibition decreases TGF-ß1 and CXCL1 content and increases GATA1positive megakaryocytes while TGF-ß1 or CXCL1 inhibition decreased CXCL1 only. In conclusion, Gata1low mice are a novel genetic-driven model for IPF and provide a link between abnormal immune-megakaryocytes and lung fibrosis.

6.
Biomolecules ; 12(2)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35204735

RESUMO

Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-ß1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.


Assuntos
Citocinas , Fator de Transcrição GATA1 , Mielofibrose Primária , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fator de Transcrição GATA1/metabolismo , Megacariócitos/metabolismo , Megacariócitos/patologia , Camundongos , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia
7.
Microsc Res Tech ; 84(2): 217-237, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32915487

RESUMO

Histology refers to the study of the morphology of cells within their natural tissue environment. As a bio-medical discipline, it dates back to the development of first microscopes which allowed to override the physical visual limitation of the human eye. Since the first observations, it was understood that cell shape predicts function and, therefore, shape alterations can identify and explain dysfunction and diseases. The advancements in morphological investigation techniques have allowed to extend our understanding of the shape-function relationships close to the molecular level of organization of tissues, as well as to derive reliable data not only from fixed, and hence static, biological samples but also living cells and tissues and even for extended time periods. These modern approaches, which encompass quantitative microscopy, precision microscopy, and dynamic microscopy, represent the new frontier of morphology. This article summarizes how the microscopy techniques have evolved to properly face the challenges of biomedical sciences, thus transforming histology from a merely qualitative discipline, which played an ancillary role to traditional "major" sciences such as anatomy, to a modern experimental science capable of driving knowledge progress in biology and medicine.


Assuntos
Pesquisa Biomédica , Técnicas Histológicas/tendências , Microscopia/tendências , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Humanos
8.
Fac Rev ; 10: 68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557872

RESUMO

Thrombocytopoiesis is a complex process beginning at the level of hematopoietic stem cells, which ultimately generate megakaryocytes, large marrow cells with a distinctive morphology, and then, through a process of terminal maturation, megakaryocytes shed thousands of platelets into the circulation. This process is controlled by intrinsic and extrinsic factors. Emerging data indicate that an important intrinsic control on the late stages of thrombopoiesis is exerted by integrins, a family of transmembrane receptors composed of one α and one ß subunit. One ß subunit expressed by megakaryocytes is the ß1 integrin, the role of which in the regulation of platelet formation is beginning to be clarified. Here, we review recent data indicating that activation of ß1 integrin by outside-in and inside-out signaling regulates the interaction of megakaryocytes with the endosteal niche, which triggers their maturation, while its inactivation by galactosylation determines the migration of these cells to the perivascular niche, where they complete their terminal maturation and release platelets in the bloodstream. Furthermore, ß1 integrin mediates the activation of transforming growth factor ß (TGF-ß), a protein produced by megakaryocytes that may act in an autocrine fashion to halt their maturation and affect the composition of their surrounding extracellular matrix. These findings suggest that ß1 integrin could be a therapeutic target for inherited and acquired disorders of platelet production.

9.
Front Genet ; 12: 720552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707640

RESUMO

The phenotype of mice carrying the Gata1 low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a µLCR/ß-globin promoter to rescue the phenotype induced by the Gata1 low mutation in mice. Double hGATA1/Gata1 low/0 mice were viable at birth with hematocrits greater than those of their Gata1 low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1 low/0 mice expressed greater levels of GATA1 protein and of α- and ß-globin mRNA than cells from Gata1 low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1 low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1 +/0 littermates, Gata1 low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1 low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/ß-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1 low/0 mutation.

10.
Front Oncol ; 10: 584541, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312951

RESUMO

Numerous studies have documented ultrastructural abnormalities in malignant megakaryocytes from bone marrow (BM) of myelofibrosis patients but the morphology of these cells in spleen, an important extramedullary site in this disease, was not investigated as yet. By transmission-electron microscopy, we compared the ultrastructural features of megakaryocytes from BM and spleen of myelofibrosis patients and healthy controls. The number of megakaryocytes was markedly increased in both BM and spleen. However, while most of BM megakaryocytes are immature, those from spleen appear mature with well-developed demarcation membrane systems (DMS) and platelet territories and are surrounded by platelets. In BM megakaryocytes, paucity of DMS is associated with plasma (thick with protrusions) and nuclear (dilated with large pores) membrane abnormalities and presence of numerous glycosomes, suggesting a skewed metabolism toward insoluble polyglucosan accumulation. By contrast, the membranes of the megakaryocytes from the spleen were normal but these cells show mitochondria with reduced crests, suggesting deficient aerobic energy-metabolism. These distinctive morphological features suggest that malignant megakaryocytes from BM and spleen express distinctive metabolic impairments that may play different roles in the pathogenesis of myelofibrosis.

11.
J Clin Med ; 8(5)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052457

RESUMO

Evidences of a crosstalk between Epidermal Growth Factor Receptor (EGFR) and Glucocorticoid Receptor (GR) has been reported, ranging from the modulation of receptor levels or GR mediated transcriptional repression of EGFR target genes, with modifications of epigenetic markers. The present study focuses on the involvement of EGFR positive and negative feedback genes in the establishment of cetuximab (CTX) resistance in metastatic Colorectal Cancer (CRC) patients. We evaluated the expression profile of the EGFR ligands TGFA and HBEGF, along with the pro-inflammatory cytokines IL-1B and IL-8, which were previously reported to be negatively associated with monoclonal antibody response, both in mice and patient specimens. Among EGFR negative feedback loops, we focused on ERRFI1, DUSP1, LRIG3, and LRIG1. We observed that EGFR positive feedback genes are increased in CTX-resistant cells, whereas negative feedback genes are reduced. Next, we tested the expression of these genes in CTX-resistant cells upon GR modulation. We unveiled that GR activation leads to an increase in ERRFI1, DUSP1, and LRIG1, which were shown to restrict EGFR activity, along with a decrease in the EGFR activators (TGFA and IL-8). Finally, in a cohort of xenopatients, stratified for response to cetuximab, we observed an inverse association between the expression level of LRIG1 and CRC progression upon CTX treatment. Our model implies that combining GR modulation to EGFR inhibition may yield an effective treatment strategy in halting cancer progression.

12.
Exp Hematol ; 79: 16-25.e3, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31678370

RESUMO

Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor ß (TGF-ß) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm-neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-ß. These data identify TGF-ß as a potential target for micro-environmental therapy in PMF.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Mielofibrose Primária/metabolismo , Transdução de Sinais , Trombocitemia Essencial/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mielofibrose Primária/genética , Mielofibrose Primária/patologia , Trombocitemia Essencial/genética , Trombocitemia Essencial/patologia
13.
Front Oncol ; 9: 1245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824842

RESUMO

Although stem cell factor (SCF)/cKIT interaction plays key functions in erythropoiesis, cKIT signaling in human erythroid cells is still poorly defined. To provide new insights into cKIT-mediated erythroid expansion in development and disease, we performed phosphoproteomic profiling of primary erythroid progenitors from adult blood (AB), cord blood (CB), and Polycythemia Vera (PV) at steady-state and upon SCF stimulation. While AB and CB, respectively, activated transient or sustained canonical cKIT-signaling, PV showed a non-canonical signaling including increased mTOR and ERK1 and decreased DEPTOR. Accordingly, screening of FDA-approved compounds showed increased PV sensitivity to JAK, cKIT, and MEK inhibitors. Moreover, differently from AB and CB, in PV the mature 145kDa-cKIT constitutively associated with the tetraspanin CD63 and was not endocytosed upon SCF stimulation, contributing to unrestrained cKIT signaling. These results identify a clinically exploitable variegation of cKIT signaling/metabolism that may contribute to the great erythroid output occurring during development and in PV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA