Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 23(1): 19, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36703133

RESUMO

The coronavirus disease 2019 (COVID-19) has developed into a pandemic. Data-driven techniques can be used to inform and guide public health decision- and policy-makers. In generalizing the spread of a virus over a large area, such as a province, it must be assumed that the transmission occurs as a stochastic process. It is therefore very difficult for policy and decision makers to understand and visualize the location specific dynamics of the virus on a more granular level. A primary concern is exposing local virus hot-spots, in order to inform and implement non-pharmaceutical interventions. A hot-spot is defined as an area experiencing exponential growth relative to the generalised growth of the pandemic. This paper uses the first and second waves of the COVID-19 epidemic in Gauteng Province, South Africa, as a case study. The study aims provide a data-driven methodology and comprehensive case study to expose location specific virus dynamics within a given area. The methodology uses an unsupervised Gaussian Mixture model to cluster cases at a desired granularity. This is combined with an epidemiological analysis to quantify each cluster's severity, progression and whether it can be defined as a hot-spot.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Inteligência Artificial , África do Sul/epidemiologia , Big Data , Pandemias
2.
PLOS Glob Public Health ; 2(11): e0001113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962677

RESUMO

We conducted an observational retrospective study on patients hospitalized with COVID-19, during March 05, 2020, to October 28, 2021, and developed an agent-based model to evaluate effectiveness of recommended healthcare resources (hospital beds and ventilators) management strategies during the COVID-19 pandemic in Gauteng, South Africa. We measured the effectiveness of these strategies by calculating the number of deaths prevented by implementing them. We observed differ ences between the epidemic waves. The length of hospital stay (LOS) during the third wave was lower than the first two waves. The median of the LOS was 6.73 days, 6.63 days and 6.78 days for the first, second and third wave, respectively. A combination of public and private sector provided hospital care to COVID-19 patients requiring ward and Intensive Care Units (ICU) beds. The private sector provided 88.4% of High care (HC)/ICU beds and 49.4% of ward beds, 73.9% and 51.4%, 71.8% and 58.3% during the first, second and third wave, respectively. Our simulation results showed that with a high maximum capacity, i.e., 10,000 general and isolation ward beds, 4,000 high care and ICU beds and 1,200 ventilators, increasing the resource capacity allocated to COVID- 19 patients by 25% was enough to maintain bed availability throughout the epidemic waves. With a medium resource capacity (8,500 general and isolation ward beds, 3,000 high care and ICU beds and 1,000 ventilators) a combination of resource management strategies and their timing and criteria were very effective in maintaining bed availability and therefore preventing excess deaths. With a low number of maximum available resources (7,000 general and isolation ward beds, 2,000 high care and ICU beds and 800 ventilators) and a severe epidemic wave, these strategies were effective in maintaining the bed availability and minimizing the number of excess deaths throughout the epidemic wave.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34360183

RESUMO

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


Assuntos
Big Data , COVID-19 , Inteligência Artificial , Humanos , Saúde Pública , SARS-CoV-2 , Vacinação
4.
Artigo em Inglês | MEDLINE | ID: mdl-34299827

RESUMO

The impact of the still ongoing "Coronavirus Disease 2019" (COVID-19) pandemic has been and is still vast, affecting not only global human health and stretching healthcare facilities, but also profoundly disrupting societal and economic systems worldwide. The nature of the way the virus spreads causes cases to come in further recurring waves. This is due a complex array of biological, societal and environmental factors, including the novel nature of the emerging pathogen. Other parameters explaining the epidemic trend consisting of recurring waves are logistic-organizational challenges in the implementation of the vaccine roll-out, scarcity of doses and human resources, seasonality, meteorological drivers, and community heterogeneity, as well as cycles of strengthening and easing/lifting of the mitigation interventions. Therefore, it is crucial to be able to have an early alert system to identify when another wave of cases is about to occur. The availability of a variety of newly developed indicators allows for the exploration of multi-feature prediction models for case data. Ten indicators were selected as features for our prediction model. The model chosen is a Recurrent Neural Network with Long Short-Term Memory. This paper documents the development of an early alert/detection system that functions by predicting future daily confirmed cases based on a series of features that include mobility and stringency indices, and epidemiological parameters. The model is trained on the intermittent period in between the first and the second wave, in all of the South African provinces.


Assuntos
COVID-19 , Humanos , Memória de Curto Prazo , Redes Neurais de Computação , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA