Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Trop ; 193: 142-147, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30836060

RESUMO

In malaria-endemic areas, most pregnant women are susceptible to asymptomatic Plasmodium falciparum infections. We present here the results of a cross-sectional study conducted in Madibou, a southern district of Brazzaville in the Republic of Congo, between March 2014 and April 2015. The main aim was to characterize P. falciparum infections. Blood samples corresponding to peripheral, placental and cord from 370 asymptomatic malaria women at delivery were diagnosed for plasmodium infection by thick blood smears (microscopic infection). Sub-microscopic infection was detected by PCR, using the MSP-2 gene as marker. Microscopic infections were detected in peripheral, placental and cord blood samples with a prevalence of respectively 7.3% (27/370), 2.7% (10/370) and 0%. The negative samples were submitted to sub-microscopic detection, with respective prevalence of 25.4% (87/343), 16.7% (60/360) and 9.4% (35/370) (P < 0.001). We further investigated the genetic diversity of the parasite by characterizing MSP2 allelic families 3D7 (24 distinct alleles) and FC27 (20 distinct alleles). The total number of alleles for these two families were 31, 25 and 19 in peripheral, placental and cord samples respectively. The 3D7 MSP-2 was the predominant allelic family. The multiplicity of infections (MOI) in peripheral (mean 1.4 ± 0.01; range 1-4), placental (mean 1.2 ± 0.01; range 1-3) and cord samples (1.4 ± 0.01; range 1-3) were similar (P = 0.9) and are unaffected by age, gravidity or sulfadoxine-pyrimethamine. These results shown a high prevalence of sub-microscopic infection and a high genetic diversity of Plasmodium falciparum strains in Congo. Age, gravidity and doses of preventive treatment based on sulfadoxine-pyrimethamine do not interfere with the multiplicity of infections.


Assuntos
Sangue Fetal/parasitologia , Malária Falciparum/epidemiologia , Placenta/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Adulto , Alelos , Doenças Assintomáticas/epidemiologia , Congo/epidemiologia , Estudos Transversais , Feminino , Variação Genética , Humanos , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Gravidez , Prevalência , Adulto Jovem
2.
Comput Struct Biotechnol J ; 17: 1415-1428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871587

RESUMO

Gene regulatory regions contain short and degenerated DNA binding sites recognized by transcription factors (TFBS). When TFBS harbor SNPs, the DNA binding site may be affected, thereby altering the transcriptional regulation of the target genes. Such regulatory SNPs have been implicated as causal variants in Genome-Wide Association Study (GWAS) studies. In this study, we describe improved versions of the programs Variation-tools designed to predict regulatory variants, and present four case studies to illustrate their usage and applications. In brief, Variation-tools facilitate i) obtaining variation information, ii) interconversion of variation file formats, iii) retrieval of sequences surrounding variants, and iv) calculating the change on predicted transcription factor affinity scores between alleles, using motif scanning approaches. Notably, the tools support the analysis of haplotypes. The tools are included within the well-maintained suite Regulatory Sequence Analysis Tools (RSAT, http://rsat.eu), and accessible through a web interface that currently enables analysis of five metazoa and ten plant genomes. Variation-tools can also be used in command-line with any locally-installed Ensembl genome. Users can input personal collections of variants and motifs, providing flexibility in the analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA