Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2313574121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478693

RESUMO

This study supports the development of predictive bacteriophage (phage) therapy: the concept of phage cocktail selection to treat a bacterial infection based on machine learning (ML) models. For this purpose, ML models were trained on thousands of measured interactions between a panel of phage and sequenced bacterial isolates. The concept was applied to Escherichia coli associated with urinary tract infections. This is an important common infection in humans and companion animals from which multidrug-resistant (MDR) bloodstream infections can originate. The global threat of MDR infection has reinvigorated international efforts into alternatives to antibiotics including phage therapy. E. coli exhibit extensive genome-level variation due to horizontal gene transfer via phage and plasmids. Associated with this, phage selection for E. coli is difficult as individual isolates can exhibit considerable variation in phage susceptibility due to differences in factors important to phage infection including phage receptor profiles and resistance mechanisms. The activity of 31 phage was measured on 314 isolates with growth curves in artificial urine. Random Forest models were built for each phage from bacterial genome features, and the more generalist phage, acting on over 20% of the bacterial population, exhibited F1 scores of >0.6 and could be used to predict phage cocktails effective against previously untested strains. The study demonstrates the potential of predictive ML models which integrate bacterial genomics with phage activity datasets allowing their use on data derived from direct sequencing of clinical samples to inform rapid and effective phage therapy.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Terapia por Fagos , Infecções Urinárias , Humanos , Animais , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Bacteriófagos/genética , Antibacterianos/farmacologia , Infecções Urinárias/tratamento farmacológico
2.
Mol Cell ; 55(2): 199-213, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24910100

RESUMO

In bacteria, Hfq is a core RNA chaperone that catalyzes the interaction of mRNAs with regulatory small RNAs (sRNAs). To determine in vivo RNA sequence requirements for Hfq interactions, and to study riboregulation in a bacterial pathogen, Hfq was UV crosslinked to RNAs in enterohemorrhagic Escherichia coli (EHEC). Hfq bound repeated trinucleotide motifs of A-R-N (A-A/G-any nucleotide) often associated with the Shine-Dalgarno translation initiation sequence in mRNAs. These motifs overlapped or were adjacent to the mRNA sequences bound by sRNAs. In consequence, sRNA-mRNA duplex formation will displace Hfq, promoting recycling. Fifty-five sRNAs were identified within bacteriophage-derived regions of the EHEC genome, including some of the most abundant Hfq-interacting sRNAs. One of these (AgvB) antagonized the function of the core genome regulatory sRNA, GcvB, by mimicking its mRNA substrate sequence. This bacteriophage-encoded "anti-sRNA" provided EHEC with a growth advantage specifically in bovine rectal mucus recovered from its primary colonization site in cattle.


Assuntos
Escherichia coli O157/virologia , Prófagos/genética , Pequeno RNA não Traduzido/metabolismo , RNA Viral/genética , Animais , Sequência de Bases , Sítios de Ligação , Bovinos , Sequência Consenso , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Dados de Sequência Molecular , Muco/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , RNA Viral/metabolismo
3.
EMBO J ; 36(3): 374-387, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836995

RESUMO

RNA sequencing studies have identified hundreds of non-coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high-throughput analysis of RNA-RNA interactions in bacteria. Here we demonstrate that in vivo sRNA-mRNA duplexes can be recovered using UV-crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base-paired sRNA-mRNA duplexes in association with RNase E, allowing proximity-dependent ligation and sequencing of cognate sRNA-mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA-mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co-regulated target mRNAs. We identified multiple mRNA targets for the pathotype-specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli Numerous sRNA interactions were also identified with non-coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/química , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/análise , Pequeno RNA não Traduzido/análise , Escherichia coli/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/isolamento & purificação , Análise de Sequência de DNA
4.
Environ Sci Technol ; 55(22): 15276-15286, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34738785

RESUMO

Wastewater based epidemiology (WBE) has become an important tool during the COVID-19 pandemic, however the relationship between SARS-CoV-2 RNA in wastewater treatment plant influent (WWTP) and cases in the community is not well-defined. We report here the development of a national WBE program across 28 WWTPs serving 50% of the population of Scotland, including large conurbations, as well as low-density rural and remote island communities. For each WWTP catchment area, we quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and COVID-19 cases. Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, had the strongest correlation (ρ > 0.9) with COVID-19 cases within a catchment. As the incidence of COVID-19 cases within a community increased, a linear relationship emerged between cases and influent viral RNA load. There were significant differences between WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the limit of detection ranging from 25 cases for larger plants to a single case in smaller plants. SARS-CoV-2 viral RNA load can be used to predict the number of cases detected in the WWTP catchment area, with a clear statistically significant relationship observed above site-specific case thresholds.


Assuntos
COVID-19 , Purificação da Água , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Carga Viral , Águas Residuárias
5.
Genomics ; 112(6): 4242-4253, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663607

RESUMO

Shiga-toxigenic Escherichia coli (STEC) is often transmitted into food via fresh produce plants, where it can cause disease. To identify early interaction factors for STEC on spinach, a high-throughput positive-selection system was used. A bacterial artificial chromosome (BAC) clone library for isolate Sakai was screened in four successive rounds of short-term (2 h) interaction with spinach roots, and enriched loci identified by microarray. A Bayesian hierarchical model produced 115 CDS credible candidates, comprising seven contiguous genomic regions. Of the two candidate regions selected for functional assessment, the pO157 plasmid-encoded type two secretion system (T2SS) promoted interactions, while a chaperone-usher fimbrial gene cluster (loc6) did not. The T2SS promoted bacterial binding to spinach and appeared to involve the EtpD secretin protein. Furthermore, the T2SS genes, etpD and etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD was expressed in planta by E. coli Sakai on spinach plants.


Assuntos
Escherichia coli O157/genética , Interações entre Hospedeiro e Microrganismos/genética , Sistemas de Secreção Tipo II/genética , Adesinas Bacterianas/genética , Aderência Bacteriana , Cromossomos Artificiais Bacterianos , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/metabolismo , Genes Bacterianos , Genômica , Mutação , Raízes de Plantas/microbiologia , Plasmídeos/genética , Spinacia oleracea/microbiologia , Sistemas de Secreção Tipo II/metabolismo
6.
Microbiology (Reading) ; 166(10): 947-965, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32886602

RESUMO

Bacterial flagella have many established roles beyond swimming motility. Despite clear evidence of flagella-dependent adherence, the specificity of the ligands and mechanisms of binding are still debated. In this study, the molecular basis of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium flagella binding to epithelial cell cultures was investigated. Flagella interactions with host cell surfaces were intimate and crossed cellular boundaries as demarcated by actin and membrane labelling. Scanning electron microscopy revealed flagella disappearing into cellular surfaces and transmission electron microscopy of S. Typhiumurium indicated host membrane deformation and disruption in proximity to flagella. Motor mutants of E. coli O157:H7 and S. Typhimurium caused reduced haemolysis compared to wild-type, indicating that membrane disruption was in part due to flagella rotation. Flagella from E. coli O157 (H7), EPEC O127 (H6) and S. Typhimurium (P1 and P2 flagella) were shown to bind to purified intracellular components of the actin cytoskeleton and directly increase in vitro actin polymerization rates. We propose that flagella interactions with host cell membranes and cytoskeletal components may help prime intimate attachment and invasion for E. coli O157:H7 and S. Typhimurium, respectively.


Assuntos
Membrana Celular/microbiologia , Citoesqueleto/metabolismo , Escherichia coli O157/fisiologia , Flagelos/metabolismo , Salmonella typhimurium/fisiologia , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Animais , Aderência Bacteriana , Membrana Celular/metabolismo , Membrana Celular/patologia , Membrana Celular/ultraestrutura , Células Cultivadas , Citoesqueleto/ultraestrutura , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Flagelos/genética , Flagelos/ultraestrutura , Interações Hospedeiro-Patógeno , Humanos , Microscopia Eletrônica , Mutação , Polimerização , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
7.
Clin Sci (Lond) ; 134(24): 3283-3301, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33346356

RESUMO

Host adaptation of pathogens may increase intra- and interspecies transmission. We showed previously that the passage of a clinically isolated enterohemorrhagic Escherichia coli (EHEC) O157 strain (125/99) through the gastrointestinal tract of mice increases its pathogenicity in the same host. In this work, we aimed to elucidate the underlying mechanism(s) involved in the patho-adaptation of the stool-recovered (125RR) strain. We assessed the global transcription profile by microarray and found almost 100 differentially expressed genes in 125RR strain compared with 125/99 strain. We detected an overexpression of Type Three Secretion System (TTSS) proteins at the mRNA and protein levels and demonstrated increased adhesion to epithelial cell lines for the 125RR strain. Additional key attributes of the 125RR strain were: increased motility on semisolid agar, which correlated with an increased fliC mRNA level; reduced Stx2 production at the mRNA and protein levels; increased survival at pH 2.5, as determined by acid resistance assays. We tested whether the overexpression of the LEE-encoded regulator (ler) in trans in the 125/99 strain could recreate the increased pathogenicity observed in the 125RR strain. As anticipated ler overexpression led to increased expression of TTSS proteins and bacterial adhesion to epithelial cells in vitro but also increased mortality and intestinal colonization in vivo. We conclude that this host-adaptation process required changes in several mechanisms that improved EHEC O157 fitness in the new host. The research highlights some of the bacterial mechanisms required for horizontal transmission of these zoonotic pathogens between their animal and human populations.


Assuntos
Adaptação Fisiológica , Microambiente Celular , Escherichia coli O157/fisiologia , Intestinos/microbiologia , Animais , Sistemas de Secreção Bacterianos/genética , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Feminino , Regulação Bacteriana da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Fenótipo , Virulência
8.
Nucleic Acids Res ; 46(7): 3366-3381, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432565

RESUMO

The prokaryotic RNA chaperone Hfq mediates sRNA-mRNA interactions and plays a significant role in post-transcriptional regulation of the type III secretion (T3S) system produced by a range of Escherichia coli pathotypes. UV-crosslinking was used to map Hfq-binding under conditions that promote T3S and multiple interactions were identified within polycistronic transcripts produced from the locus of enterocyte effacement (LEE) that encodes the T3S system. The majority of Hfq binding was within the LEE5 and LEE4 operons, the latter encoding the translocon apparatus (SepL-EspADB) that is positively regulated by the RNA binding protein, CsrA. Using the identified Hfq-binding sites and a series of sRNA deletions, the sRNA Spot42 was shown to directly repress translation of LEE4 at the sepL 5' UTR. In silico and in vivo analyses of the sepL mRNA secondary structure combined with expression studies of truncates indicated that the unbound sepL mRNA is translationally inactive. Based on expression studies with site-directed mutants, an OFF-ON-OFF toggle model is proposed that results in transient translation of SepL and EspA filament assembly. Under this model, the nascent mRNA is translationally off, before being activated by CsrA, and then repressed by Hfq and Spot42.


Assuntos
Translocação Bacteriana/genética , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Sítios de Ligação/genética , Citoesqueleto/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Conformação de Ácido Nucleico/efeitos da radiação , RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/efeitos da radiação , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/efeitos da radiação , Raios Ultravioleta
9.
J Biol Chem ; 293(23): 9006-9016, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29678883

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a significant human pathogen that colonizes humans and its reservoir host, cattle. Colonization requires the expression of a type 3 secretion (T3S) system that injects a mixture of effector proteins into host cells to promote bacterial attachment and disease progression. The T3S system is tightly regulated by a complex network of transcriptional and post-transcriptional regulators. Using transposon mutagenesis, here we identified the ybeZYX-Int operon as being required for normal T3S levels. Deletion analyses localized the regulation to the endoribonuclease YbeY, previously linked to 16S rRNA maturation and small RNA (sRNA) function. Loss of ybeY in EHEC had pleiotropic effects on EHEC cells, including reduced motility and growth and cold sensitivity. Using UV cross-linking and RNA-Seq (CRAC) analysis, we identified YbeY-binding sites throughout the transcriptome and discovered specific binding of YbeY to the "neck" and "beak" regions of 16S rRNA but identified no significant association of YbeY with sRNA, suggesting that YbeY modulates T3S by depleting mature ribosomes. In E. coli, translation is strongly linked to mRNA stabilization, and subinhibitory concentrations of the translation-initiation inhibitor kasugamycin provoked rapid degradation of a polycistronic mRNA encoding needle filament and needle tip proteins of the T3S system. We conclude that T3S is particularly sensitive to depletion of initiating ribosomes, explaining the inhibition of T3S in the ΔybeY strain. Accessory virulence transcripts may be preferentially degraded in cells with reduced translational capacity, potentially reflecting prioritization in protein production.


Assuntos
Escherichia coli Êntero-Hemorrágica/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Humanos , Metaloproteínas/genética , Modelos Moleculares , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Transcriptoma , Sistemas de Secreção Tipo III/genética
11.
PLoS Pathog ; 11(1): e1004627, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25633080

RESUMO

Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Interações Hospedeiro-Patógeno/genética , Klebsiella pneumoniae/genética , Lipopolissacarídeos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Bases , Células Cultivadas , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Infecções por Klebsiella/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Polimixinas/farmacologia , Regulon
12.
Antimicrob Agents Chemother ; 60(1): 459-70, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525795

RESUMO

A subset of Gram-negative bacterial pathogens uses a type III secretion system (T3SS) to open up a conduit into eukaryotic cells in order to inject effector proteins. These modulate pathways to enhance bacterial colonization. In this study, we screened established bioactive compounds for any that could repress T3SS expression in enterohemorrhagic Escherichia coli (EHEC) O157. The ketolides telithromycin and, subsequently, solithromycin both demonstrated repressive effects on expression of the bacterial T3SS at sub-MICs, leading to significant reductions in bacterial binding and actin-rich pedestal formation on epithelial cells. Preincubation of epithelial cells with solithromycin resulted in significantly less attachment of E. coli O157. Moreover, bacteria expressing the T3SS were more susceptible to solithromycin, and there was significant preferential killing of E. coli O157 bacteria when they were added to epithelial cells that had been preexposed to the ketolide. This killing was dependent on expression of the T3SS. Taken together, this research indicates that the ketolide that has accumulated in epithelial cells may traffic back into the bacteria via the T3SS. Considering that neither ketolide induces the SOS response, nontoxic members of this class of antibiotics, such as solithromycin, should be considered for future testing and trials evaluating their use for treatment of EHEC infections. These antibiotics may also have broader significance for treating infections caused by other pathogenic bacteria, including intracellular bacteria, that express a T3SS.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Cetolídeos/farmacologia , Macrolídeos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/farmacologia , Sistemas de Secreção Tipo III/antagonistas & inibidores , Animais , Antibacterianos/química , Aderência Bacteriana/efeitos dos fármacos , Células CACO-2 , Bovinos , Linhagem Celular , Descoberta de Drogas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Cetolídeos/química , Macrolídeos/química , Testes de Sensibilidade Microbiana , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/microbiologia , Triazóis/química , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
13.
Proc Natl Acad Sci U S A ; 110(40): 16265-70, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043803

RESUMO

Identifying the major sources of risk in disease transmission is key to designing effective controls. However, understanding of transmission dynamics across species boundaries is typically poor, making the design and evaluation of controls particularly challenging for zoonotic pathogens. One such global pathogen is Escherichia coli O157, which causes a serious and sometimes fatal gastrointestinal illness. Cattle are the main reservoir for E. coli O157, and vaccines for cattle now exist. However, adoption of vaccines is being delayed by conflicting responsibilities of veterinary and public health agencies, economic drivers, and because clinical trials cannot easily test interventions across species boundaries, lack of information on the public health benefits. Here, we examine transmission risk across the cattle-human species boundary and show three key results. First, supershedding of the pathogen by cattle is associated with the genetic marker stx2. Second, by quantifying the link between shedding density in cattle and human risk, we show that only the relatively rare supershedding events contribute significantly to human risk. Third, we show that this finding has profound consequences for the public health benefits of the cattle vaccine. A naïve evaluation based on efficacy in cattle would suggest a 50% reduction in risk; however, because the vaccine targets the major source of human risk, we predict a reduction in human cases of nearly 85%. By accounting for nonlinearities in transmission across the human-animal interface, we show that adoption of these vaccines by the livestock industry could prevent substantial numbers of human E. coli O157 cases.


Assuntos
Vacinas Bacterianas/uso terapêutico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Escherichia coli/veterinária , Escherichia coli O157/patogenicidade , Vacinação em Massa/veterinária , Zoonoses/prevenção & controle , Animais , Derrame de Bactérias/genética , Bovinos , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/transmissão , Fezes/microbiologia , Humanos , Modelos Imunológicos , Reação em Cadeia da Polimerase/veterinária , Saúde Pública , Medição de Risco , Escócia , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Zoonoses/microbiologia
14.
Vet Res ; 46: 9, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25827709

RESUMO

Flagellin subunits are important inducers of host immune responses through activation of TLR5 when extracellular and the inflammasome if cytosolic. Our previous work demonstrated that systemic immunization of cattle with flagella generates systemic and mucosal IgA responses. The IgA response in mice is TLR5-dependent and TLR5 can impact on the general magnitude of the adaptive response. However, due to sequence differences between bovine and human/murine TLR5 sequences, it is not clear whether bovine TLR5 (bTLR5) is able to stimulate an inflammatory response following interaction with flagellin. To address this we have examined the innate responses of both human and bovine cells containing bTLR5 to H7 flagellin from E. coli O157:H7. Both HEK293 (human origin) and embryonic bovine lung (EBL) cells transfected with bTLR5 responded to addition of H7 flagellin compared to non-transfected controls. Responses were significantly reduced when mutations were introduced into the TLR5-binding regions of H7 flagellin, including an R90T substitution. In bovine primary macrophages, flagellin-stimulated CXCL8 mRNA and secreted protein levels were significantly reduced when TLR5 transcript levels were suppressed by specific siRNAs and stimulation was reduced with the R90T-H7 variant. While these results indicate that the bTLR5 sequence produces a functional flagellin-recognition receptor, cattle immunized with R90T-H7 flagella also demonstrated systemic IgA responses to the flagellin in comparison to adjuvant only controls. This presumably either reflects our findings that R90T-H7 still activates bTLR5, albeit with reduced efficiency compared to WT H7 flagellin, or that other flagellin recognition pathways may play a role in this mucosal response.


Assuntos
Escherichia coli O157/imunologia , Flagelina/imunologia , Imunoglobulina A/genética , Receptor 5 Toll-Like/genética , Animais , Bovinos , Flagelos/metabolismo , Flagelina/metabolismo , Células HEK293 , Humanos , Imunização/veterinária , Imunoglobulina A/metabolismo , Receptor 5 Toll-Like/metabolismo
15.
Infect Immun ; 82(12): 5117-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267838

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic diarrhea and potentially fatal renal failure in humans. Ruminants are considered to be the primary reservoir for human infection. Vaccines that reduce shedding in cattle are only partially protective, and their underlying protective mechanisms are unknown. Studies investigating the response of cattle to colonization generally focus on humoral immunity, leaving the role of cellular immunity unclear. To inform future vaccine development, we studied the cellular immune responses of cattle during EHEC O157:H7 colonization. Calves were challenged either with a phage type 21/28 (PT21/28) strain possessing the Shiga toxin 2a (Stx2a) and Stx2c genes or with a PT32 strain possessing the Stx2c gene only. T-helper cell-associated transcripts at the terminal rectum were analyzed by reverse transcription-quantitative PCR (RT-qPCR). Induction of gamma interferon (IFN-γ) and T-bet was observed with peak expression of both genes at 7 days in PT32-challenged calves, while upregulation was delayed, peaking at 21 days, in PT21/28-challenged calves. Cells isolated from gastrointestinal lymph nodes demonstrated antigen-specific proliferation and IFN-γ release in response to type III secreted proteins (T3SPs); however, responsiveness was suppressed in cells isolated from PT32-challenged calves. Lymph node cells showed increased expression of the proliferation marker Ki67 in CD4(+) T cells from PT21/28-challenged calves, NK cells from PT32-challenged calves, and CD8(+) and γδ T cells from both PT21/28- and PT32-challenged calves following ex vivo restimulation with T3SPs. This study demonstrates that cattle mount cellular immune responses during colonization with EHEC O157:H7, the temporality of which is strain dependent, with further evidence of strain-specific immunomodulation.


Assuntos
Portador Sadio/veterinária , Doenças dos Bovinos/imunologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/imunologia , Imunidade Celular , Animais , Linfócitos T CD8-Positivos/imunologia , Portador Sadio/imunologia , Portador Sadio/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Perfilação da Expressão Gênica , Células Matadoras Naturais/imunologia , Linfonodos/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reto/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
PLoS Pathog ; 8(5): e1002672, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615557

RESUMO

Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.


Assuntos
Sistemas de Secreção Bacterianos , Colífagos/genética , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Lisogenia , Toxina Shiga II/genética , Animais , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/metabolismo , Escherichia coli Êntero-Hemorrágica/virologia , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Toxina Shiga II/biossíntese , Transativadores/genética , Transativadores/metabolismo
17.
Commun Biol ; 7(1): 794, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951173

RESUMO

Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.


Assuntos
Antibacterianos , Reatores Biológicos , Colistina , Farmacorresistência Bacteriana , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Colistina/farmacologia , Antibacterianos/farmacologia , Reatores Biológicos/microbiologia , Farmacorresistência Bacteriana/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Testes de Sensibilidade Microbiana , Humanos
18.
Mol Microbiol ; 83(1): 208-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22111928

RESUMO

This study has identified horizontally acquired genomic regions of enterohaemorrhagic Escherichia coli O157:H7 that regulate expression of the type III secretion (T3S) system encoded by the locus of enterocyte effacement (LEE). Deletion of O-island 51, a 14.93 kb cryptic prophage (CP-933C), resulted in a reduction in LEE expression and T3S. The deletion also had a reduced capacity to attach to epithelial cells and significantly reduced E. coli O157 excretion levels from sheep. Further characterization of O-island 51 identified a novel positive regulator of the LEE, encoded by ecs1581 in the E. coli O157:H7 strain Sakai genome and present but not annotated in the E. coli strain EDL933 sequence. Functionally important residues of ECs1581 were identified based on phenotypic variants present in sequenced E. coli strains and the regulator was termed RgdR based on a motif demonstrated to be important for stimulation of gene expression. While RgdR activated expression from the LEE1 promoter in the presence or absence of the LEE-encoded regulator (Ler), RgdR stimulation of T3S required ler and Ler autoregulation. RgdR also controlled the expression of other phenotypes, including motility, indicating that this new family of regulators may have a more global role in E. coli gene expression.


Assuntos
Sistemas de Secreção Bacterianos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/virologia , Regulação Bacteriana da Expressão Gênica , Prófagos/genética , Animais , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Deleção de Genes , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Prófagos/fisiologia , Ovinos
19.
Mol Microbiol ; 80(5): 1349-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21492263

RESUMO

Type III secretion (T3S) plays a pivotal role in the colonization of ruminant hosts by Enterohemorrhagic Escherichia coli (EHEC). The T3S system translocates effector proteins into host cells to promote bacterial attachment and persistence. The repertoire and variation in prophage regions underpins differences in the pathogenesis and epidemiology of EHEC strains. In this study, we have used a collection of deletions in cryptic prophages and EHEC O157 O-islands to screen for novel regulators of T3S. Using this approach we have identified a family of homologous AraC-like regulators that indirectly repress T3S. These prophage-encoded secretion regulator genes (psr) are found exclusively on prophages and are associated with effector loci and the T3S activating Pch family of regulators. Transcriptional profiling, mutagenesis and DNA binding studies were used to show that these regulators usurp the conserved GAD acid stress resistance system to regulate T3S by increasing the expression of GadE (YhiE) and YhiF and that this regulation follows attachment to bovine epithelial cells. We further demonstrate that PsrA and effectors encoded within cryptic prophage CP933-N are required for persistence in a ruminant model of colonization.


Assuntos
Doenças dos Bovinos/microbiologia , Elementos de DNA Transponíveis , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/metabolismo , Genes Reguladores , Glutamato Descarboxilase/genética , Prófagos/metabolismo , Proteínas Virais/metabolismo , Ácidos/metabolismo , Animais , Bovinos , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/metabolismo , Escherichia coli O157/virologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glutamato Descarboxilase/metabolismo , Prófagos/genética , Transporte Proteico , Ovinos , Transcrição Gênica , Proteínas Virais/genética
20.
Data Brief ; 31: 105769, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32551345

RESUMO

A high-throughput positive-selection approach was taken to generate a dataset of Shigatoxigenic Escherichia coli (STEC) O157:H7 genes enriched in adherence to plant tissue. The approach generates a differential dataset based on BAC clones enriched in the output, after adherence, compared to the inoculum used as the input. A BAC clone library derived from STEC isolate 'Sakai' was used since this isolate is associated with a very large-scale outbreak of human disease from consumption of contaminated fresh produce; white radish sprouts. Spinach was used for the screen since it is associated with STEC outbreaks, and the roots provide a suitable site for bacterial colonisation. Four successive of rounds of Sakai BAC clone selection and amplification were applied for spinach root adherence, in parallel to a non-plant control. Genomic DNA was obtained from a total of 7.17 × 108 cfu/ml of bacteria from the plant treatment and 1.13 × 109 cfu/ml of bacteria from the no-plant control. Relative gene abundance of the output compared to the input pools was obtained using an established E. coli DNA microarray chip for STEC. The dataset enables screening for genes enriched under the treatment condition and informs on genes that may play a role in plant-microbe interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA