Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Inorg Chem ; 63(1): 219-228, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150361

RESUMO

Two fluoro-bridged lanthanide-containing metal-organic frameworks (MOFs) were synthesized using 2,2'-bipyridine-4,4'-dicarboxylic acid (BPDC), a fluorinated modulator, and a lanthanide nitrate. The syntheses of MOFs containing Gd3+ or Tb3+ and a closely related MOF structure containing Ho3+, Gd3+, or Tb3+ are presented. The presence of the fluorinated metal chains in these MOFs is shown through single crystal X-ray diffraction, energy dispersion X-ray spectroscopy, 19F nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Magnetic measurements reveal weak antiferromagnetic exchange between the Ln3+ ions mediated by fluoride anions along the zigzag ladder chains present in the crystal structures of these MOFs.

2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34706935

RESUMO

π-stacking in ground-state dimers/trimers/tetramers of N-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol-1 in strength, drastically surpassing that for the *3[pyrene]2 excimer (∼30 kcal ⋅ mol-1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (α a , α b , α c , ß) of (452, -16.8, -154, 273) × 10-6 ⋅ K-1 and (70.1, -44.7, 163, 177) × 10-6 ⋅ K-1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y.

3.
Inorg Chem ; 62(44): 18049-18055, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870243

RESUMO

There is an ongoing interest in kagome materials because they offer tunable platforms at the intersection of magnetism and electron correlation. Herein, we examine single crystals of new kagome materials, LnxCo3(Ge1-ySny)3 (Ln = Y, Gd; y = 0.11, 0.133), which were produced using the Sn flux-growth method. Unlike many of the related chemical analogues with the LnM6X6 formula (M = transition metal and X = Ge, Sn), the Y and Gd analogues crystallize in a hybrid YCo6Ge6/CoSn structure, with Sn substitution. While the Y analogue displays temperature-independent paramagnetism, magnetic measurements of the Gd analogue reveal a magnetic moment of 8.48 µB, indicating a contribution from both Gd and Co. Through anisotropic magnetic measurements, the direction of Co-magnetism can be inferred to be in plane with the kagome net, as the Co contribution is only along H//a. Crystal growth and structure determination of YxCo3(Ge,Sn)3 and GdxCo3(Ge,Sn)3, two new hybrid kagome materials of the CoSn and YCo6Ge6 structure types. Magnetic properties, heat capacity, and resistivity on single crystals are reported.

4.
J Am Chem Soc ; 144(6): 2468-2473, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35099968

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers that consist of covalently linked, two-dimensional sheets that can stack together through noncovalent interactions. Here we report the synthesis of a novel COF, called PyCOFamide, which has an experimentally observed pore size that is greater than 6 nm in diameter. This is among the largest pore size reported to date for a 2D-COF. PyCOFamide exhibits permanent porosity and high crystallinity as evidenced by the nitrogen adsorption, powder X-ray diffraction, and high-resolution transmission electron microscopy. We show that the pore size of PyCOFamide is large enough to accommodate fluorescent proteins such as Superfolder green fluorescent protein and mNeonGreen. This work demonstrates the utility of noncovalent structural reinforcement in 2D-COFs to produce larger and persistent pore sizes than previously possible.


Assuntos
Estruturas Metalorgânicas/química , Adsorção , Proteínas de Fluorescência Verde/química , Ligação de Hidrogênio , Estruturas Metalorgânicas/síntese química , Porosidade
5.
J Am Chem Soc ; 143(43): 17995-18000, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677056

RESUMO

The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.

6.
J Am Chem Soc ; 143(15): 5951-5957, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33822596

RESUMO

Solid-state thermoelastic behavior-a sudden exertion of an expansive or contractive physical force following a temperature change and phase transition in a solid-state compound-is rare in organic crystals, few are reversible systems, and most of these are limited to a dozen or so cycles before the crystal degrades or they reverse slowly over the course of many minutes or even hours. Comparable to thermosalience, wherein crystal phase changes induce energetic jumping, thermomorphism produces physical work via consistent and near-instantaneous predictable directional force. In this work, we show a fully reversible thermomorphic actuator that is stable at room temperature for multiple years and is capable of actuation for more than 200 cycles at near-ambient temperature. Specifically, the crystals shrink to 90% of their original length instantaneously upon heating beyond 45 °C and expand back to their original length upon cooling below 35 °C. Furthermore, the phase transition occurs instantaneously, with little obvious hysteresis, allowing us to create real-time actuating thermal fuses that cycle between on and off rapidly.

7.
Inorg Chem ; 60(20): 15343-15350, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34609873

RESUMO

The BaAl4 prototype structure and its derivatives have been identified to host several topological quantum materials and noncentrosymmetric superconductors. Single crystals up to ∼3 mm × 3 mm × 5 mm of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are obtained via flux growth utilizing Sn as metallic flux. The crystal structure is isostructural to the Lu2Co3Si5 structure type in the crystallographic space group C2/c. The temperature-dependent magnetization indicates magnetic ordering at 30 K for all three compounds. Pr2Co3Ge5 and Nd2Co3Ge5 exhibit complex magnetic behavior with spin reorientations before ordering antiferromagnetically around 6 K, whereas Sm2Co3Ge5 shows a clear antiferromagnetic behavior at 26 K. The structures and properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm) are compared to those of the ThCr2Si2 and BaNiSn3 structure types. Herein, we present the optimized crystal growth, structure, and physical properties of Ln2Co3Ge5 (Ln = Pr, Nd, and Sm).

8.
Inorg Chem ; 60(14): 10565-10571, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34176270

RESUMO

Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquids, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner-sharing square-planar CuO4 units have been intensely studied due to their Mott insulating ground state, which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid-state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate, Cu3(TeO4)(SO4)·H2O, a promising alternative to layered perovskites. The orthorhombic phase (space group Pnma) is made of corrugated layers of corner-sharing CuO4 square-planar units that are edge-shared with TeO4 units. The layers are linked by slabs of corner-sharing CuO4 and SO4. Using both the bond valence sum analysis and magnetization data, we find purely Cu2+ ions within the layers but a mixed valence of Cu2+/Cu+ between the layers. Cu3(TeO4)(SO4)·H2O undergoes an antiferromagnetic transition at TN = 67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at T* = 12 K, evidenced by a kink in the heat capacity. The spin-canting transition is explained on the basis of a J1-J2 model of magnetic interactions, which is consistent with the slightly different in-plane superexchange paths. We present Cu3(TeO4)(SO4)·H2O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.

9.
J Chem Phys ; 154(11): 114707, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752369

RESUMO

Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.

10.
J Am Chem Soc ; 142(30): 12987-12994, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32627546

RESUMO

We report the synthesis and characterization of a new class of 2D-covalent organic frameworks, called COFamides, whose layers are held together by amide hydrogen bonds. To accomplish this, we have designed monomers with a nonplanar structure that arises from steric crowding, forcing the amide side groups out of plane with the COF sheets orienting the hydrogen bonds between the layers. The presence of these hydrogen bonds provides significant structural stabilization as demonstrated by comparison to control structures that lack hydrogen bonding capability, resulting in lower surface area and crystallinity. We have characterized both azine and imine-linked versions of these COFs, named COFamide-1 and -2, respectively, for their surface areas, pore sizes, and crystallinity. In addition to these more conventional characterization methods, we also used variable temperature infrared spectroscopy methods and van der Waals density functional calculations to directly observe the presence of hydrogen bonding.

11.
Inorg Chem ; 59(12): 8196-8202, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32459498

RESUMO

A new ternary nonstoichiometric Zr6.5Pt6Se19 has been discovered as a part of effort to dope Zr into the layered transitional metal chalcogenide PtSe2. With a new structure type (oC68), it is the first Pt-based ternary chalcogenide with group 4 elements (Ti, Zr, and Hf). The crystal structure adopts the orthorhombic space group Cmmm with lattice parameters of a = 15.637(6) Å, b = 26.541(10) Å, c = 3.6581(12) Å, and V = 1518.2(9) Å3. This unusual structure consists of several building units: chains of edge-sharing selenium trigonal prisms and octahedra centered by zirconium atoms, chains of corner-shared square pyramid, and square planar centered by Pt atoms. The condensation of these building blocks forms a unique structure with bilayered Zr5.54Pt6Se19 slabs stacking along the b direction and large channels parallel to the c direction within the bilayered slabs. Band structure calculations suggest that partial occupancy of Zr atoms creates a pseudo gap at the Fermi level and is likely the main cause for the stability of this new phase.

12.
Inorg Chem ; 58(18): 12017-12024, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483609

RESUMO

A nonstoichiometric ternary antimonide, Zr3.55Pt4Sb4, with a new structure type (hP24), has been synthesized via arc-melting. Its crystal structure was determined by single-crystal X-ray diffraction with hexagonal space group P63/mmc and lattice parameters a = 4.391(3) Å, c = 30.53(2) Å, and V = 509.7(8) Å3. It features the unique Pt4Sb4 slab with Pt-Pt bonds and is reminiscent to hexagonal diamond substructures. Three different Zr atoms, occupying three different sites, aid in the close-packing of the Pt and Sb atoms. Electronic structure calculations show the half occupancy of one Zr site creates a pseudogap at the Fermi level and optimizes the Pt-Sb bonding interactions. This enhances the electronic stability and accounts for the very narrow phase width observed for this nonstoichiometric compound. Furthermore, strong Zr-Pt and Zr-Sb interactions play a crucial role in the chemical bonding of the title compound. Electrical transport measurements show metallic behavior of this compound down to 2 K, consistent with the band structure calculations.

13.
Inorg Chem ; 58(8): 5031-5041, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30924648

RESUMO

A novel copper(II) metal-organic framework (MOF) has been synthesized by modifying the reaction conditions of a 1D coordination polymer. The 1D polymer is built by the coordination between copper and 2,2'-(1 H-imidazole-4,5-diyl)di-1,4,5,6-tetrahydropyrimidine (H-L1). The geometry of H-L1 precludes its ability to form extended 3D framework structures. By adding 1,4-benzenedicarboxylic acid (H2BDC), a well-studied linker in MOF synthesis, we achieved the transition from a 1D polymer chain into porous 2D layered structures. Hydrogen bonding between L1 and BDC directs the parallel stacking of these layers, resulting in a 3D structure with one-dimensional channels accessible by two different pore windows. The preferred growth orientation of the crystal produces prolonged channels and a disparity in pore size distribution. This in turn results in slow diffusion processes in the material. Furthermore, an isoreticular MOF was prepared by substituting the BDC linker by 2,6-naphthalenedicarboxylic acid (H2NDC).

14.
Inorg Chem ; 58(9): 6028-6036, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30985121

RESUMO

Single crystals of Ln2Fe4- xCo xSb5- yBi y (Ln = La, Ce; 0 ≤ x < 0.5; 0 ≤ y ≤ 0.2) were grown using Bi flux and self-flux methods. The compounds adopt the La2Fe4Sb5 structure type with tetragonal space group I4/ mmm. The La2Fe4Sb5 structure type is comprised of rare earth atoms capping square Sb nets in a square antiprismatic fashion and two transition-metal networks forming a PbO-type layer with Sb and transition-metal isosceles triangles. Substituting Co into the transition-metal sublattice results in a decrease in the transition temperature and reduced frustration, indicative of a transition from localized to itinerant behavior. In this manuscript, we demonstrated that Bi can be used as an alternate flux to grow single crystals of antimonides. Even with the incorporation of Bi into the Sb square net, the magnetic properties are not significantly affected. In addition, we have shown that the incorporation of Co into the Fe triangular sublattice leads to an itinerant magnetic system.

15.
Inorg Chem ; 58(9): 6037-6043, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009213

RESUMO

A new structure type of composition Ce6Co5Ge16 was grown out of a molten Sn flux. Ce6Co5Ge16 crystallizes in the orthorhombic space group Cmcm, with highly anisotropic lattice parameters of a = 4.3293(5) Å, b = 55.438(8) Å, and c = 4.3104(4) Å. The resulting single crystals were characterized by X-ray diffraction, and the magnetic and transport properties are presented. The Sn-stabilized structure of Ce6Co5Ge16 is based on the stacking of disordered Ce cuboctahedra and is an intergrowth of existing structure types including AlB2, BaNiSn3, and AuCu3. The stacking of structural subunits has previously been shown to be significant in the fields of superconductivity, quantum materials, and optical materials. Herein, we present the synthesis, characterization, and complex magnetic behavior of Ce6Co5Ge16 at low temperature, including three distinct magnetic transitions.

16.
J Am Chem Soc ; 139(30): 10506-10513, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28696109

RESUMO

We report the synthesis of one new boronate ester-based covalent organic framework (COF) and two new covalent organic polymers (COPs) made with fluoranthene-containing monomers and hexahydroxytriphenylene. The structure of the monomer heavily influences whether this material forms a highly ordered mesoporous material (COF) or an amorphous, microporous material (COP). The synthesis of the fluoranthene monomers was carried out using a divergent strategy that allows for systematic structural variation and the ability to conduct a careful structure-function study. We found that small structural variations in the monomers dramatically affected the crystallinity, surface area, pore structure, and luminescence properties of the polymers. While each of the monomers contains the same fluoranthene core, the resultant pore sizes range from microporous (10 Å) to mesoporous (37 Å), with surface areas ranging from ∼500 to 1200 m2/g. To help explain how these small structural differences can have such a large effect, we carried out a series of molecular dynamics simulations on the polymers to obtain information with atomic-scale resolution on how the monomer structure affects non-covalent COF layer stacking.

17.
J Am Chem Soc ; 139(48): 17431-17437, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29083166

RESUMO

A previous report demonstrated that EuDO3A could be used as an NMR shift reagent for imaging extracellular lactate produced by cancer cells using CEST imaging. In this work, a series of heptadentate macrocyclic YbDO3A-trisamide complexes with δ-chiral carbons in the three pendant side-arms were examined as shift reagents for lactate detection. High resolution 1H NMR spectra and DFT calculations provided evidence for the formation of stereoselective lactate·YbDO3A-trisamide complexes each with a different CEST signature. This stereoselectivity allowed discrimination of d- versus l-lactate by both high-resolution NMR and CEST. This work demonstrates that lanthanide-based paramagnetic shift reagents can be designed to detect important metabolites by CEST MRI selectively.


Assuntos
Ácido Láctico/análise , Ácido Láctico/química , Elementos da Série dos Lantanídeos/química , Espectroscopia de Ressonância Magnética/métodos , Indicadores e Reagentes
18.
Chemistry ; 23(18): 4255-4259, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28135407

RESUMO

Here, we report a structure-function study of imine covalent organic frameworks (COFs) comparing a series of novel fluorine-containing monomers to their non-fluorinated analogues. We found that the fluorine-containing monomers produced 2D-COFs with not only greatly improved surface areas (over 2000 m2 g-1 compared to 760 m2 g-1 for the non-fluorinated analogue), but also with improved crystallinity and larger, more defined pore diameters. We then studied the formation of these COFs under varying reaction times and temperatures to obtain a greater insight into their mechanism of formation.

19.
Photochem Photobiol Sci ; 16(7): 1057-1062, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509916

RESUMO

Spiropyrans are notable among different classes of photochromic compounds due to their large structural and electronic transformation upon isomerization. In order to parlay the electronic differences associated with the two isomeric forms into a materials based switch, the spiropyran ultimately requires a covalent attachment through a conjugated pathway. In this work a synthetic method was developed to incorporate spiropyran (SP) into thiophene based materials. A series of compounds with a systematic variation of substituents were synthesized (SP-T, SP-T-Br, SP-T-T, SP-T-T-T and SP-T-T-T-T-SP) and their photochromism in both polar (methanol) and non-polar (toluene) solvents were studied. These compounds showed a systematic variation of photochromic properties.

20.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833897

RESUMO

Ziegler-Natta catalysts have played a major role in industry for the polymerization of dienes and vinyl monomers. However, due to the deactivation of the catalyst, this system fails to polymerize polar vinyl monomers such as vinyl acetate, methyl methacrylate, and methyl acrylate. Herein, a catalytic system composed of NdCl3 ⋅3TEP/TIBA is reported, which promotes a quasi-living polymerization of dienes and is also active for the homopolymerization of polar vinyl monomers. Additionally, this catalytic system generates polymyrcene-b-polyisoprene and poly(myrcene)-b-poly(methyl methacrylate) diblock copolymers by sequential monomer addition. To encourage the replacement of petroleum-based polymers by environmentally benign biobased polymers, polymerization of ß-myrcene is demonstrated with a catalytic activity of ≈106 kg polymer mol Nd-1 h-1 .


Assuntos
Acrilatos/química , Neodímio/química , Polimerização , Compostos de Vinila/química , Catálise , Polienos/química , Cloreto de Polivinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA