Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 195(11): 1494-1508, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199128

RESUMO

RATIONALE: Improving the early detection and chemoprevention of lung cancer are key to improving outcomes. The pathobiology of early squamous lung cancer is poorly understood. We have shown that amplification of sex-determining region Y-box 2 (SOX2) is an early and consistent event in the pathogenesis of this disease, but its functional oncogenic potential remains uncertain. We tested the impact of deregulated SOX2 expression in a novel organotypic system that recreates the molecular and microenvironmental context in which squamous carcinogenesis occurs. OBJECTIVES: (1) To develop an in vitro model of bronchial dysplasia that recapitulates key molecular and phenotypic characteristics of the human disease; (2) to test the hypothesis that SOX2 deregulation is a key early event in the pathogenesis of bronchial dysplasia; and (3) to use the model for studies on pathogenesis and chemoprevention. METHODS: We engineered the inducible activation of oncogenes in immortalized bronchial epithelial cells. We used three-dimensional tissue culture to build an organotypic model of bronchial dysplasia. MEASUREMENTS AND MAIN RESULTS: We recapitulated human bronchial dysplasia in vitro. SOX2 deregulation drives dysplasia, and loss of tumor promoter 53 is a cooperating genetic event that potentiates the dysplastic phenotype. Deregulated SOX2 alters critical genes implicated in hallmarks of cancer progression. Targeted inhibition of AKT prevents the initiation of the dysplastic phenotype. CONCLUSIONS: In the appropriate genetic and microenvironmental context, acute deregulation of SOX2 drives bronchial dysplasia. This confirms its oncogenic potential in human cells and affords novel insights into the impact of SOX2 deregulation. This model can be used to test therapeutic agents aimed at chemoprevention.


Assuntos
Displasia Broncopulmonar/genética , Displasia Broncopulmonar/fisiopatologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Fatores de Transcrição SOXB1/genética , Técnicas de Cultura de Células , Humanos , Modelos Biológicos
2.
Nat Commun ; 9(1): 3327, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30127402

RESUMO

Patients diagnosed with lung squamous cell carcinoma (LUSC) have limited targeted therapies. We report here the identification and characterisation of BCL11A, as a LUSC oncogene. Analysis of cancer genomics datasets revealed BCL11A to be upregulated in LUSC but not in lung adenocarcinoma (LUAD). Experimentally we demonstrate that non-physiological levels of BCL11A in vitro and in vivo promote squamous-like phenotypes, while its knockdown abolishes xenograft tumour formation. At the molecular level we found that BCL11A is transcriptionally regulated by SOX2 and is required for its oncogenic functions. Furthermore, we show that BCL11A and SOX2 regulate the expression of several transcription factors, including SETD8. We demonstrate that shRNA-mediated or pharmacological inhibition of SETD8 selectively inhibits LUSC growth. Collectively, our study indicates that BCL11A is integral to LUSC pathology and highlights the disruption of the BCL11A-SOX2 transcriptional programme as a novel candidate for drug development.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Transporte/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Loci Gênicos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Oncogenes , Organoides/patologia , Ligação Proteica , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA