Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Chemistry ; : e202401851, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011924

RESUMO

We have studied 2-(2-aminophenyl)benzothiazole and related derivatives for their photophysical properties in view of employing them as new and readily tunable organic photocatalysts. Their triplet energies were estimated by DFT calculations to be in the range of 52-57 kcal·mol-1 suggesting their suitability for the [2+2] photocycloaddition of unsaturated acyl imidazoles with styrene derivatives. Experimental studies have shown that 2­(2­aminophenyl)benzothiazoles comprising alkylamino groups (NHMe, NHiPr) or the native amino group provide the best photocatalytic results in these visible-light mediated [2+2] reactions without the need of any additives yielding a range of cyclobutane derivatives. A combined experimental and theoretical approach has provided insights into the underlying triplet-triplet energy transfer process.

2.
J Fluoresc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009903

RESUMO

Oleic acid-capped CdSe/ZnS quantum dots (QDs) were used to investigate their photoluminescence (PL) response to Hg2+ ions as a function of the surface properties of QDs. Three distinctly-size CdSe/ZnS QDs were obtained by varying the molar ratio of shell precursors, which were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy, and time-resolved fluorescence spectroscopy. Results revealed the obtention of zinc blende nanocrystals with sizes ranging from 2.7 to 3.2 nm (± 0.5) and ZnS thickness between 0.3 and 1.0 monolayer (ML). The variation of the [S]/[Zn] molar ratio introduced chemical species that act as traps, affecting the PL properties differently. Depending on the thickness of the shell and chemical speciation on surface, Hg2+ ions could induce quenching or enhancement of PL. Detection of mercury ions was evaluated in terms of Stern-Volmer equation, where the limit of detection (LOD) for the PL quenching system was 11.2 nM, while for the PL enhancing systems were 8.98 nM and 10.7 nM. Results demonstrate the performance of oleic acid-capped CdSe/ZnS QDs to detect Hg2+ and their capacity to turn the PL on/off depending on surface properties.

3.
Angew Chem Int Ed Engl ; 63(26): e202402964, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38634355

RESUMO

The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)-H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl- dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.

4.
Inorg Chem ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310150

RESUMO

Reductive dimerization of fulvenes using low-valent metal precursors is a straightforward one-step approach to access ethylene-bridged metallocenes. This process has so far mainly been employed with fulvenes carrying one or two substituents in the exocyclic position. In this work, a new synthesis of the unsubstituted exocyclic 1,2,3,4-tetraphenylfulvene (1), its full structural characterization by NMR spectroscopy and single-crystal X-ray diffraction, as well as some photophysical properties and its first use in reductive dimerization are described. This fulvene reacted with different lanthanoid metals in thf to provide the divalent ansa-octaphenylmetallocenes [Ln(C5Ph4CH2)2(thf)n] (Ln = Sm, n = 2 (2); Ln = Eu, n = 2 (3); and Ln = Yb, n = 1 (4)). These complexes were characterized by X-ray diffraction, laser desorption/ionization time of flight mass spectrometry, and, in the case of Sm and Yb, multinuclear NMR spectroscopy, showing the influence of the ansa-bridge on solution and solid-state structures compared to previously reported unbridged metallocenes. Furthermore, the luminescence properties of the Eu ansa complex 3 were studied in solution and the solid state, revealing significant differences with the known octa- and deca-phenyleuropocenes, [Eu(C5Ph4H)2(dme)] and [Eu(C5Ph5)2].

5.
Org Biomol Chem ; 21(17): 3644-3649, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37066764

RESUMO

A series of enantiopure water-soluble quinoline-based foldamers were prepared and their optical and chiroptical properties in water were investigated. The new hexameric sequences incorporated either cationic or anionic water-solubilizing chains, and one of the oligomers was additionally functionalized by an electron donating moiety to further modulate the optoelectronic properties. A systematic study revealed strong electronic circular dichroism and circularly-polarized luminescence properties in water, with dissymmetry factors up to 2 × 10-2 in absorption and 5 × 10-3 in emission, regardless of the nature of the solubilizing chains and functions. This study therefore highlights new opportunities for the development of water-soluble and chiroptically-active artificial systems towards chirality-associated applications in aqueous or biological media.

6.
J Am Chem Soc ; 144(15): 6894-6906, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380826

RESUMO

A series of aromatic helix-sheet-helix oligoamide foldamers composed of several different photosensitive diazaanthracene units have been designed and synthesized. Molecular objects up to 7 kDa were straightforwardly produced on a 100 mg scale. Nuclear magnetic resonance and crystallographic investigations revealed that helix-sheet-helix architectures can adopt one or two distinct conformations. Sequences composed of an even number of turn units were found to fold in a canonical symmetrical conformation with two helices of identical handedness stacked above and below the sheet segment. Sequences composed of an odd number of turns revealed a coexistence between a canonical fold with helices of opposite handedness and an alternate fold with a twist within the sheet and two helices of identical handedness. The proportions between these species could be manipulated, in some cases quantitatively, being dependent on solvent, temperature, and absolute control of helix handedness. Diazaanthracene units were shown to display distinct reactivity toward [4 + 4] photocycloadditions according to the substituent in position 9. Their organization within the sequences was programmed to allow photoreactions to take place in a specific order. Reaction pathways and kinetics were deciphered and product characterized, demonstrating the possibility to orchestrate successive photoreactions so as to avoid orphan units or to deliberately produce orphan units at precise locations. Strong cooperative effects were observed in which the photoreaction rate was influenced by the presence (or absence) of photoadducts in the structure. Multiple photoreactions within the aromatic sheet eventually lead to structure lengthening and stiffening, locking conformational equilibria. Photoproducts could be thermally reverted.


Assuntos
Amidas , Amidas/química , Espectroscopia de Ressonância Magnética , Conformação Molecular
7.
Chemistry ; 27(66): 16512-16522, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34632666

RESUMO

A linear double pyridinium-terminated thread comprising a central chalcone moiety is shown to provide two independent binding sites with similar affinity for cucurbit[7]uril (CB7) macrocycles in water as judged from NMR, UV-Visible and fluorescence spectroscopies. Association results in [2] and [3]pseudorotaxanes, which are both pH and photosensitive. Switching from the neutral chalcone to the cationic flavylium form upon irradiation at 365 nm under acidic conditions provided an enhanced CB7 association (K1:1 increases from 1.2×105  M-1 to 1.5×108  M-1 ), limiting spontaneous on-thread cucurbituril shuttling. This co-conformational change in the [2]pseudorotaxane is reversible in the dark with kobs =4.1×10-4  s-1 . Threading the flavylium moiety into CB7 leads to a dramatic increase in the fluorescence quantum yield, from 0.29 in the free axle to 0.97 in the [2]pseudorotaxane and 1.0 in the [3]pseudorotaxane.


Assuntos
Rotaxanos , Hidrocarbonetos Aromáticos com Pontes , Concentração de Íons de Hidrogênio , Imidazóis , Água
8.
Inorg Chem ; 60(23): 17426-17434, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34788035

RESUMO

Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.


Assuntos
Complexos de Coordenação/química , Cobre/análise , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Complexos de Coordenação/síntese química , Íons/química , Substâncias Luminescentes/síntese química , Medições Luminescentes , Estrutura Molecular
9.
Inorg Chem ; 60(14): 10791-10798, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236828

RESUMO

Due to their similar coordination properties, discrimination of Cu+ and Ag+ by water-soluble luminescent probes is challenging. We have synthesized LCC4Eu, an 18 amino acid cyclic peptide bearing a europium complex, which is able to bind one Cu+ or Ag+ ion by the side chains of two methionines, a histidine and a 3-(1-naphthyl)-l-alanine. In this system, the naphthyl moiety establishes a cation-π interaction with these cations. It also acts as an antenna for the sensitization of Eu3+ luminescence. Interestingly, when excited at 280 nm, LCC4Eu behaves as a turn-on probe for Ag+ (+150% Eu emission) and as a turn-off probe for Cu+ (-50% Eu3+ emission). Shifting the excitation wavelength to 305 nm makes the probe responsive to Ag+ (+380% Eu3+ emission) but not to Cu+ or other physiological cations. Thus, LCC4Eu is uniquely capable of discriminating Ag+ from Cu+. A detailed spectroscopic characterization based on steady-state and time-resolved measurements clearly demonstrates that Eu3+ sensitization relies on electronic energy transfer from the naphthalene triplet state to the Eu3+ excited states and that the cation-π interaction lowers the energy of this triplet state by 700 and 2400 cm-1 for Ag+ and Cu+, respectively. Spectroscopic data point to a modulation of the efficiency of the electronic energy transfer caused by the differential red shift of the naphthalene triplet, deciphering the differential luminescence response of LCC4Eu toward Ag+ and Cu+.


Assuntos
Biomimética , Cobre/análise , Európio/química , Substâncias Luminescentes/química , Prata/análise , Transferência de Energia , Peptídeos Cíclicos/química , Solubilidade , Água/química
10.
Org Biomol Chem ; 19(26): 5800-5805, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110351

RESUMO

The Cu(ii) complex 1 incorporating a BP chromophore is a highly active and chemoselective photocatalyst for the alkylation of α-amino C-H bonds of anilines. The reaction was shown to proceed with a broad substrate scope in the absence of additives. Extensive mechanistic studies were performed, in particular using transient absorption spectroscopy, and spectroscopic signatures of key intermediates were identified in the conditions of catalysis. Finally, the ability of 1 to act as a multitask catalyst was showcased by conducting multi-component CuAAC and olefin hydroalkylation reactions in one-pot.

11.
Beilstein J Org Chem ; 16: 1564-1571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32704322

RESUMO

The templated clipping of a ferrocene-grafted isophthalic acid derivative to encircle a hydrogen-bonding axle through the reaction with 1,4-bis(aminomethyl)benzene is described. The constituent electroactive macrocycle of the resultant [2]rotaxane is a homologue of the versatile benchmark tetraamide variant developed by Leigh and co-workers. The relative templating effect of different hydrogen-bonding motifs in rotaxane and pseudorotaxane generation is compared, with yields varying from 0 to 41%. The electrochemical properties and single crystal X-ray structure of a doubly ferrocene-decorated [2]rotaxane are further reported.

12.
Photochem Photobiol Sci ; 18(9): 2102-2111, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30907909

RESUMO

Among stimulus-responsive molecular ring-on-thread rotaxanes and pseudorotaxanes, variants incorporating photochromic sub-units are attracting considerable attention as their properties and structure can be remotely and precisely controlled, additionally without producing chemical waste. The focus herein is on photoswitching-driven assembly/disassembly and modulation of properties resulting from light-activated isomerization or changes in electronic properties.

13.
Beilstein J Org Chem ; 15: 2801-2811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807215

RESUMO

Free calcium ion concentration is known to govern numerous biological processes and indeed calcium acts as an important biological secondary messenger for muscle contraction, neurotransmitter release, ion-channel gating, and exocytosis. As such, the development of molecules with the ability to instantaneously increase or diminish free calcium concentrations potentially allows greater control over certain biological functions. In order to permit remote regulation of Ca2+, a selective BAPTA-type synthetic receptor / host was integrated with a photoswitchable azobenzene motif, which upon photoirradiation would enhance (or diminish) the capacity to bind calcium upon acting on the conformation of the adjacent binding site, rendering it a stronger or weaker binder. Photoswitching was studied in pseudo-physiological conditions (pH 7.2, [KCl] = 100 mM) and dissociation constants for azobenzene cis- and trans-isomers have been determined (0.230 µM and 0.102 µM, respectively). Reversible photoliberation/uptake leading to a variation of free calcium concentration in solution was detected using a fluorescent Ca2+ chemosensor.

14.
Org Biomol Chem ; 16(34): 6195-6201, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-29714805

RESUMO

Two types of fluorescent logic gates are accessed from two different arrangements of the same modular components, one as an AND logic gate (1) and the other as a PASS 0 logic gate (2). The logic gates were designed with an 'electron-donor-spacer1-fluorophore-spacer2-receptor' format and demonstrated in 1 : 1 (v/v) methanol/water. The molecules consist of ferrocene as the electron donor, 4-aminonaphthalimide as the fluorophore and a tertiary alkylamine as the receptor. In the presence of high H+ and Fe3+ levels, regioisomers 1a and 1b switch 'on' as AND logic gates with fluorescence enhancement ratios of 16-fold and 10-fold, respectively, while regioisomers 2a and 2b are functionally dormant, exhibiting no fluorescence switching. The PASS 0 logic of 2a and 2b results from the transfer of an electron from the excited state fluorophore to the ferrocenium unit under oxidising conditions as predicted by DFT calculations. Time-resolved fluorescence spectroscopy provided lifetimes of 8.3 ns and 8.1 ns for 1a and 1b, respectively. The transient signal recovery rate of 1b is ∼10 ps while that of 2b is considerably longer on the nanosecond timescale. The divergent logic attributes of 1 and 2 highlight the importance of field effects and opens up a new approach for regulating logic-based molecules.

15.
Angew Chem Int Ed Engl ; 57(12): 3104-3107, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29383800

RESUMO

The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 µs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer.

16.
Org Biomol Chem ; 15(20): 4367-4374, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28474718

RESUMO

Structural integration of two synthetic water soluble receptors for Ca2+ and Mg2+, namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg2+ and Ca2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg2+ for a single Ca2+ is possible in both 1 and 2, the simultaneous binding of two Mg2+ by 2 appears prohibitive for replacement of these two ions by a single Ca2+. Ion-binding and exchange was further rationalized by DFT calculations.

17.
Angew Chem Int Ed Engl ; 56(6): 1566-1570, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27981689

RESUMO

The light-triggered, programmable rupture of cell-sized vesicles is described, with particular emphasis on self-assembled polymersome capsules. The mechanism involves a hypotonic osmotic imbalance created by the accumulation of photogenerated species inside the lumen, which cannot be compensated owing to the low water permeability of the membrane. This simple and versatile mechanism can be adapted to a wealth of hydrosoluble molecules, which are either able to generate reactive oxygen species or undergo photocleavage. Ultimately, in a multi-compartmentalized and cell-like system, the possibility to selectively burst polymersomes with high specificity and temporal precision and to consequently deliver small encapsulated vesicles (both polymersomes and liposomes) is demonstrated.

18.
J Am Chem Soc ; 138(41): 13568-13578, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27652807

RESUMO

A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 µs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 109 s-1 for the longest sequence to 17 × 109 s-1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (kET = 2.5 × 1012 s-1 in CH2Cl2). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.

19.
Chemphyschem ; 17(12): 1794-804, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-26945897

RESUMO

Reversible electronic energy transfer (REET) may be instilled in bi-/multichromophoric molecule-based systems, following photoexcitation, upon judicious structural integration of matched chromophores. This leads to a new set of photophysical properties for the ensemble, which can be fully characterized by steady-state and time-resolved spectroscopic methods. Herein, we take a comprehensive look at progress in the development of this type of supermolecule in the last five years, which has seen systems evolve from covalently tethered dyads to synthetic molecular machines, exemplified by two different pseudorotaxanes. Indeed, REET holds promise in the control of movement in molecular machines, their assembly/disassembly, as well as in charge separation.


Assuntos
Elétrons , Transferência de Energia , Substâncias Macromoleculares/química , Compostos Organometálicos/química , Estrutura Molecular , Processos Fotoquímicos , Fatores de Tempo
20.
Analyst ; 141(10): 3090-7, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27094953

RESUMO

A doubly pyrene-grafted bis-cyclometallated iridium complex with engineered electronically excited states demonstrates reversible electronic energy transfer between adjacent chromophores giving rise to extremely long-lived red luminescence in solution (τ = 480 µs). Time-resolved spectroscopic studies afforded determination of pertinent photophysical parameters including rates of energy transfer and energy distribution between constituent chromophores in the equilibrated excited molecule (ca. 98% on the organic chromophores). Incorporation into a nanostructured metal-oxide matrix (AP200/19) gave highly sensitive O2 sensing films, as the detection sensitivity was 200-300% higher than with the commonly used PtTFPP and approaches the sensitivity of the best O2-sensing dyes reported to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA