RESUMO
OBJECTIVES: Amphetamine-based medications are recommended as a first-line pharmacotherapy for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. However, the efficacy and tolerability of these medications vary across individuals, which could be related to interindividual differences in amphetamine metabolism. This study examined if genotype-predicted phenotypes of the cytochrome P450 isozyme CYP2D6 were associated with self-reported side effects and symptom improvement in youth treated with amphetamines. METHODS: Two hundred fourteen participants aged 6-24 who had a history of past or current amphetamine treatment were enrolled from Western Canada. Amphetamine dose and duration information was collected from the participants along with questions regarding adherence, concomitant medications, symptom improvement and side effects. DNA was extracted from saliva samples and genotyped for CYP2D6 . Binomial logistic regression models were used to determine the effect of CYP2D6 metabolizer phenotype with and without correction for phenoconversion on self-reported symptom improvement and side effects. RESULTS: Genotype-predicted CYP2D6 poor metabolizers had significantly higher odds of reporting symptom improvement when compared to intermediate metabolizers (ORâ =â 3.67, 95% CIâ =â 1.15-11.7, P â =â 0.029) after correction for phenoconversion and adjusting for sex, age, dose, duration, and adherence. There was no association between CYP2D6 metabolizer phenotype and self-reported side effects. CONCLUSION: Our findings indicate that phenoconverted and genotype-predicted CYP2D6 poor metabolizer phenotype is significantly associated with higher odds of symptom improvement in children and adolescents treated with amphetamine. If replicated, these results could inform the development of future dosing guidelines for amphetamine treatment in children and adolescents.
Assuntos
Anfetaminas , Transtorno do Deficit de Atenção com Hiperatividade , Citocromo P-450 CYP2D6 , Humanos , Citocromo P-450 CYP2D6/genética , Adolescente , Criança , Masculino , Feminino , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/genética , Anfetaminas/efeitos adversos , Anfetaminas/administração & dosagem , Genótipo , Adulto Jovem , Variação Genética , Fenótipo , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Estimulantes do Sistema Nervoso Central/administração & dosagem , AutorrelatoRESUMO
Background: Clinical practice guidelines recommend the use of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), as a first-line pharmacotherapy for major depressive disorder (MDD) and obsessive compulsive disorder (OCD) in children and adolescents. However, response and tolerability to fluoxetine varies from child to child, which may in part, be a result of interindividual differences in fluoxetine metabolism. In this study, we examined whether genotype-predicted activity scores of cytochrome P450 enzymes were associated with patient-reported symptom improvement and side effects in children and adolescents treated with fluoxetine. Methods: Ninety children and adolescents aged 7-18 with a MDD or OCD diagnosis and a history of fluoxetine treatment were recruited from Western Canada. For each participant, fluoxetine dose and duration information were collected, as well as questions about adherence, side effects, and symptom improvement. DNA was extracted from a saliva sample and genotyped for CYP2D6, CYP2C19, CYP2C9, CYP3A4, and CYP3A5. Logistic regression models were fitted to assess the impact of activity scores on symptom improvement and side effects. Results: Increased CYP2D6 activity score was significantly associated with reduced odds of symptom improvement (odds ratio [OR] = 0.46, 95% confidence interval [CI] = 0.23-0.91, p = 0.028) as well as a trend association with reduced side effects (OR = 0.49, 95% CI = 0.22-1.07, p = 0.072), after adjusting for age, sex, diagnosis, dose, duration, adherence, and activity scores of the other assessed CYP enzymes. No associations with symptom improvement or side effects were detected for the other CYP enzymes examined. Conclusions: Our results suggest that an increase in the genotype-predicted CYP2D6 activity score was associated with a decrease in the odds of reporting symptom improvement among children and adolescents treated with fluoxetine. These findings will contribute to future updates of pharmacogenetic-based SSRI prescribing guidelines and if replicated, could inform fluoxetine treatment in children and adolescents with MDD or OCD. Clinical Trial Registration: NCT04797364.