Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Acc Chem Res ; 55(19): 2766-2779, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137180

RESUMO

The field of molecular electronics has grown rapidly since its experimental realization in the late 1990s, with thousands of publications on how molecules can act as circuit components and the possibility of extending microelectronic miniaturization. Our research group developed molecular junctions (MJs) using conducting carbon electrodes and covalent bonding, which provide excellent temperature tolerance and operational lifetimes. A carbon-based MJ based on quantum mechanical tunneling for electronic music represents the world's first commercial application of molecular electronics, with >3000 units currently in consumer hands. The all-carbon MJ consisting of aromatic molecules and oligomers between vapor-deposited carbon electrodes exploits covalent, C-C bonding which avoids the electromigration problem of metal contacts. The high bias and temperature stability as well as partial transparency of the all-carbon MJ permit a wide range of experiments to determine charge transport mechanisms and observe photoeffects to both characterize and stimulate operating MJs. As shown in the Conspectus figure, our group has reported a variety of electronic functions, many of which do not have analogs in conventional semiconductors. Much of the described research is oriented toward the rational design of electronic functions, in which electronic characteristics are determined by molecular structure.In addition to the fabrication of molecular electronic devices with sufficient stability and operating life for practical applications, our approach was directed at two principal questions: how do electrons move through molecules that are components of an electronic circuit, and what can we do with molecules that we cannot do with existing semiconductor technology? The central component is the molecular junction consisting of a 1-20+ nm layer of covalently bonded oligomers between two electrodes of conducting, mainly sp2-hybridized carbon. In addition to describing the unique junction structure and fabrication methods, this Account summarizes the valuable insights available from photons used both as probes of device structure and dynamics and as prods to stimulate resonant transport through molecular orbitals.Short-range (<5 nm) transport by tunneling and its properties are discussed separately from the longer-range transport (5-60 nm) which bridges the gap between tunneling and transport in widely studied organic semiconductors. Most molecular electronic studies deal with the <5 nm thickness range, where coherent tunneling is generally accepted as the dominant transport mechanism. However, the rational design of devices in this range by changing molecular structure is frustrated by electronic interactions with the conducting contacts, resulting in weak structural effects on electronic behavior. When the molecular layer thickness exceeds 5 nm, transport characteristics change completely since molecular orbitals become the conduits for transport. Incident photons can stimulate transport, with the observed photocurrent tracking the absorption spectrum of the molecular layer. Low-temperature, activationless transport of photogenerated carriers is possible for up to at least 60 nm, with characteristics completely distinct from coherent tunneling and from the hopping mechanisms proposed for organic semiconductors. The Account closes with examples of phenomena and applications enabled by molecular electronics which may augment conventional microelectronics with chemical functions such as redox charge storage, orbital transport, and energy-selective photodetection.


Assuntos
Carbono , Eletrônica , Carbono/química , Eletrodos , Eletrônica/métodos , Elétrons , Semicondutores
2.
J Am Chem Soc ; 142(27): 11658-11662, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567306

RESUMO

Resonant injection and resulting charge storage were examined in a large-area carbon/tetraphenylporphyrin(TPP)/LiF/carbon junction, where the LiF layer provides mobile ions in acetonitrile (ACN) vapor. Resonant electron transfer into TPP molecules occurs at <+1 V in the presence of mobile ions, enabled by ionic screening of the carbon electrode. Injection of holes, i.e. formation of the TPP radical cation, inside the junction was monitored by in situ photocurrent measurements. Following the injection, despite the lack of a redox counter-reaction or conventional electrolyte, persistent faradaic current peaks dominate the IV cycle of the junction (±2 V) in ACN vapor, enhancing the reversible charge storage by a factor of 78 compared to that in vacuum.

3.
J Am Chem Soc ; 142(36): 15420-15430, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786741

RESUMO

The bias and temperature dependence of both dark and photoinduced currents in carbon-based molecular junctions were examined over a wide range of oligomeric layer thickness (d) values from 4 to 60 nm. The dark current density versus bias (JV) response of nitroazobenzene molecular junctions exhibits the exponential thickness dependence consistent with coherent tunneling when d < 5 nm, but becomes weakly dependent on d and temperature (T) for d = 15-60 nm. The photocurrent (PC) response is orders of magnitude higher than the dark current for the same d and bias, with very different curve shape and much earlier onset with bias. Although the dark and PC differed greatly in magnitude for d > 14 nm, they both exhibit near zero attenuation coefficients (ß < 0.05 nm-1) and are activationless (Eact < 5 meV) below ∼200 K. For d > 14 nm, both dark and PC become electric field (E) dependent and exhibit approximate overlap of J versus E response for d = 14-60 nm. The value of ln J versus E1/2 is linear for both PC and dark current, with very different magnitudes and slopes. We propose an orbital mediated transport for PC, which involves sequential tunneling of photogenerated electrons and holes between frontier orbitals of adjacent, weakly interacting oligomeric subunits. Such transport is "bulk-limited", E dependent, and nearly activationless due to small tunneling barriers and short distances between adjacent molecular orbitals. In contrast, the dark current is activated and injection limited due to an interfacial energy barrier much larger than that for bulk transport in the junction interior. Rapid, low-barrier transport between orbitals in adjacent molecules should significantly extend the "range" of molecular electronics to >50 nm and avoid the usually strong temperature dependence observed in thicker organic films.

4.
Analyst ; 145(14): 5041-5052, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32555909

RESUMO

Carbon film electrodes can often be used without pretreatment, and their fabrication allows for flexibility in size and shape and for mass production. In this work, we are exploring layered structures comprised of thin films of carbon on gold (eC/Au) prepared by electron-beam evaporation. These extremely flat films are not pyrolyzed and are comprised of mainly amorphous carbon but still exhibit reasonable conductivity due to the underlying gold layer. eC/Au electrodes, without any pretreatment, yield similar heterogeneous electron-transfer rates for benchmark redox systems and significantly lower background current in comparison with polished glassy carbon. Interestingly, they show insignificant adsorption of quinones, which is uncommon for most carbon electrode materials. However, eC/Au is still prone to adsorption of airborne hydrocarbons when exposed to ambient air like most graphitic materials. With reproducibly fast electron transfer kinetics, low background current, negligible adsorption, and ultraflat surface, eC/Au films are a promising candidate for electrochemical and sensor applications.

5.
Phys Chem Chem Phys ; 22(37): 21543-21546, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32926016

RESUMO

Misinterpretation of scanning tunnelling microscopy results yielded incorrect conclusions about the flatness of a carbon electrode substrate used for molecular electronic devices. Furthermore, the results are not supported statistically and likely not representative of materials used in numerous publications.

6.
Phys Chem Chem Phys ; 22(19): 10828-10832, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32377646

RESUMO

It has been demonstrated that mesoscopic rates operate in nanoscale electrochemical systems and, from a fundamental point of view, are able to establish a bridge between electrochemical and molecular electronic concepts. In the present work we offer additional experimental evidence in support of this statement.

7.
J Am Chem Soc ; 140(5): 1900-1909, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29319313

RESUMO

Photocurrents generated by illumination of carbon-based molecular junctions were investigated as diagnostics of how molecular structure and orbital energies control electronic behavior. Oligomers of eight aromatic molecules covalently bonded to an electron-beam deposited carbon surface were formed by electrochemical reduction of diazonium reagents, with layer thicknesses in the range of 5-12 nm. Illumination through either the top or bottom partially transparent electrodes produced both an open circuit potential (OCP) and a photocurrent (PC), and the polarity and spectrum of the photocurrent depended directly on the relative positions of the frontier orbitals and the electrode Fermi level (EF). Electron donors with relatively high HOMO energies yielded positive OCP and PC, and electron acceptors with LUMO energies closer to EF than the HOMO energy produced negative OCP and PC. In all cases, the PC spectrum and the absorption spectrum of the oligomer in the molecular junction had very similar shapes and wavelength maxima. Asymmetry of electronic coupling at the top and bottom electrodes due to differences in bonding and contact area cause an internal potential gradient which controls PC and OCP polarities. The results provide a direct indication of which orbital energies are closest to EF and also indicate that transport in molecular junctions thicker than 5 nm is controlled by the difference in energy of the HOMO and LUMO orbitals.

8.
J Am Chem Soc ; 140(23): 7239-7247, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29771503

RESUMO

The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li+) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li+ ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.

9.
Anal Chem ; 90(18): 11115-11123, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30118206

RESUMO

Applications of conducting carbon materials for highly efficient electrochemical energy devices require a greater fundamental understanding of heterogeneous electron-transfer (ET) mechanisms. This task, however, is highly challenging experimentally, because an adsorbing carbon surface may easily conceal its intrinsic reactivity through adventitious contamination. Herein, we employ nanoscale scanning electrochemical microscopy (SECM) and cyclic voltammetry to gain new insights into the interplay between heterogeneous ET and adsorption of a Co(III)/Co(II)-complex redox couple at the contamination-free surface of electron-beam-deposited carbon (eC). Specifically, we investigate the redox couple of tris(1,10-phenanthroline)cobalt(II), Co(phen)32+, as a promising mediator for dye-sensitized solar cells and redox flow batteries. A pristine eC surface overlaid with KCl is prepared in vacuum, protected from contamination in air, and exposed to an ultrapure aqueous solution of Co(phen)32+ by the dissolution of the protective KCl layer. We employ SECM-based nanogap voltammetry to quantitatively demonstrate that Co(phen)32+ is adsorbed on the pristine eC surface to electrostatically self-inhibit outer-sphere ET of nonadsorbed Co(phen)33+ and Co(phen)32+. Strong electrostatic repulsion among Co(phen)32+ adsorbates is also demonstrated by SECM-based nanogap voltammetry and cyclic voltammetry. Quantitatively, self-inhibitory ET is characterized by a linear decrease in the standard rate constant of Co(phen)32+ oxidation with a higher surface concentration of Co(phen)32+ at the formal potential. This unique relationship is consistent not with the Frumkin model of double layer effects, but with the Amatore model of partially blocked electrodes as extended for self-inhibitory ET. Significantly, the complicated coupling of electron transfer and surface adsorption is resolved by combining nanoscale and macroscale voltammetric methods.

10.
J Am Chem Soc ; 139(22): 7436-7439, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28528551

RESUMO

Molecular junctions consisting of a Ru(bpy)3 oligomer between conducting carbon contacts exhibit an exponential dependence of junction current on molecular layer thickness (d) similar to that observed for other aromatic devices when d < 4 nm. However, when d > 4 nm, a change in transport mechanism occurs which coincides with light emission in the range of 600-900 nm. Unlike light emission from electrochemical cells or solid-state films containing Ru(bpy)3, emission is bipolar, occurs in vacuum, has rapid rise time (<5 ms), and persists for >10 h. Light emission directly indicates simultaneous hole and electron injection and transport, possibly resonant due to the high electric field present (>3 MV/cm). Transport differs fundamentally from previous tunneling and hopping mechanisms and is a clear "molecular signature" relating molecular structure to electronic behavior.

11.
J Am Chem Soc ; 139(34): 11913-11922, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28780873

RESUMO

Thin layers of oligomers with thickness between 7 and 9 nm were deposited on flat gold electrode surfaces by electrochemical reduction of diazonium reagents, then a Ti(2 nm)/Au top contact was applied to complete a solid-state molecular junction. The molecular layers investigated included donor molecules with relatively high energy HOMO, molecules with high HOMO-LUMO gaps and acceptor molecules with low energy LUMO and terminal alkyl chain. Using an oligo(bisthienylbenzene) based layer, a molecule whose HOMO energy level in a vacuum is close to the Fermi level of the gold bottom electrode, the devices exhibit robust and highly reproducible rectification ratios above 1000 at low voltage (2.7 V). Higher current is observed when the bottom gold electrode is biased positively. When the molecular layer is based on a molecule with a high HOMO-LUMO gap, i.e., tetrafluorobenzene, no rectification is observed, while the direction of rectification is reversed if the molecular layer consists of naphtalene diimides having low LUMO energy level. Rectification persisted at low temperature (7 K), and was activationless between 7 and 100 K. The results show that rectification is induced by the asymmetric contact but is also directly affected by orbital energies of the molecular layer. A "molecular signature" on transport through layers with thicknesses above those used when direct tunneling dominates is thus clearly observed, and the rectification mechanism is discussed in terms of Fermi level pinning and electronic coupling between molecules and contacts.

12.
Anal Chem ; 89(12): 6463-6471, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28530804

RESUMO

Electrochemical deposition of aromatic organic molecules by reduction of diazonium reagents enables formation of molecular layers with sufficient integrity for use in molecular electronic junctions of interest to microelectronics. Characterization of organic films with thicknesses in the 1-10 nm range is difficult with Raman spectroscopy, since most molecular structures of electronic interest have Raman cross sections which are too small to observe as either thin films on solid electrodes or within intact molecular junctions. Layer formation on a 10 nm thick Ag island film on a flat carbon surface (eC/Ag) permitted acquisition of structural information using surface enhanced Raman spectroscopy (SERS), in many cases for molecules with weak Raman scattering. Raman spectra obtained on eC/Ag surfaces were indistinguishable from those on carbon without Ag present, and the spectra of oligomeric molecular layers were completely consistent with those of the monomers. Layer growth was predominantly linear for cases where such growth was sterically allowed, and linear growth correlated strongly with the line width and splitting of the C═C phenyl ring stretches. Molecular bilayers made by successive reduction of different diazonium reagents were also observable and will be valuable for applications of 1-20 nm organic films in molecular electronics.

13.
Anal Chem ; 89(24): 13532-13540, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29132207

RESUMO

Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp2- and sp3-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy. A layer of KCl deposited by e-beam to the eC surface without breaking vacuum protects the surface from the environment after fabrication until dissolved by an ultrapure electrolyte solution. Nanogap voltammetry using scanning electrochemical microscopy (SECM) permits measurement of heterogeneous standard electron-transfer rate constants (k°) in a clean environment without exposure of the electrode surface to ambient air. The ultraflat eC surface permitted nanogap voltammetry with very thin electrode-to-substrate gaps, thus increasing the diffusion limit for k° measurement to >14 cm/s for a gap of 44 nm. Ferrocene trimethylammonium as the redox mediator exhibited a diffusion-limited k° for the previously KCl-protected eC surface, while k° was 1.45 cm/s for unprotected eC. The k° for Ru(NH3)63+/2+ increased from 1.7 cm/s for unprotected eC to above the measurable limit of 6.9 cm/s for a KCl-protected eC electrode.

14.
J Am Chem Soc ; 138(3): 722-5, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26745544

RESUMO

Visible light emission was observed for molecular junctions containing 5-19 nm thick layers of aromatic molecules between carbon contacts and correlated with their current-voltage behaviors. Their emission was compared to that from Al/AlOx/Au tunnel junctions, which has been previously attributed to transport of carriers across the AlOx layer to yield "hot carriers" which emit light as they relax within the Au contact. The maximum emitted photon energy is equal to the applied bias for the case of coherent tunneling, and such behavior was observed for light emission from AlOx and thin (<5 nm) molecular junctions. For thicker films, the highest energy observed for emitted photons is less than eVapp and exhibits an energy loss that is strongly dependent on molecular layer structure and thickness. For the case of nitroazobenzene junctions, the energy loss is linear with the molecular layer thickness, with a slope of 0.31 eV/nm. Energy loss rules out coherent tunneling as a transport mechanism in the thicker films and provides a direct measure of the electron energy after it traverses the molecular layer. The transition from elastic transport in thin films to "lossy" transport in thick films confirms that electron hopping is involved in transport and may provide a means to distinguish between various hopping mechanisms, such as activated electron transport, variable range hopping, and Poole Frankel transport.

15.
J Am Chem Soc ; 138(37): 12287-96, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27563739

RESUMO

Two layers of molecular oligomers were deposited on flat carbon electrode surfaces by electrochemical reduction of diazonium reagents, then a top contact applied to complete a solid-state molecular junction containing a molecular bilayer. The structures and energy levels of the molecular layers included donor molecules with relatively high energy occupied orbitals and acceptors with low energy unoccupied orbitals. When the energy levels of the two molecular layers were similar, the device had electronic characteristics similar to a thick layer of a single molecule, but if the energy levels differed, the current voltage behavior exhibited pronounced rectification. Higher current was observed when the acceptor molecule was biased negatively in eight different bilayer combinations, and the direction of rectification was reversed if the molecular layers were also reversed. Rectification persisted at very low temperature (7 K), and was activationless between 7 and 100 K. The results are a clear example of a "molecular signature" in which electronic behavior is directly affected by molecular structure and orbital energies. The rectification mechanism is discussed, and may provide a basis for rational design of electronic properties by variation of molecular structure.

16.
J Am Chem Soc ; 137(3): 1296-304, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562564

RESUMO

The photocurrent spectra for large-area molecular junctions are reported, where partially transparent copper top contacts permit illumination by UV-vis light. The effect of variation of the molecular structure and thickness are discussed. Internal photoemission (IPE), a process involving optical excitation of hot carriers in the contacts followed by transport across internal system barriers, is dominant when the molecular component does not absorb light. The IPE spectrum contains information regarding energy level alignment within a complete, working molecular junction, with the photocurrent sign indicating transport through either the occupied or unoccupied molecular orbitals. At photon energies where the molecular layer absorbs, a secondary phenomenon is operative in addition to IPE. In order to distinguish IPE from this secondary mechanism, we show the effect of the source intensity as well as the thickness of the molecular layer on the observed photocurrent. Our results clearly show that the IPE mechanism can be differentiated from the secondary mechanism by the effects of variation of experimental parameters. We conclude that IPE can provide valuable information regarding interfacial energetics in intact, working molecular junctions, including clear discrimination of charge transport mediated by electrons through unoccupied system orbitals from that mediated by hole transport through occupied system orbitals.

17.
Proc Natl Acad Sci U S A ; 109(29): 11498-503, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22660930

RESUMO

Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting "contact." It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range (< 0.5 eV) in the observed transport barrier despite widely different free molecule HOMO energies (> 2 eV range). These results are explained by considering the effect of bonding the molecule to the substrate. Upon bonding, electronic inductive effects modulate the energy levels of the system resulting in compression of the tunneling barrier. Modification of the molecule with donating or withdrawing groups modulate the molecular orbital energies and the contact energy level resulting in a leveling effect that compresses the tunneling barrier into a range much smaller than expected. Whereas the value of the tunneling barrier can be varied by using a different class of molecules (alkanes), using only aromatic structures results in a similar equilibrium value for the tunnel barrier for different structures resulting from partial charge transfer between the molecular layer and the substrate. Thus, the system does not obey the Schottky-Mott limit, and the interaction between the molecular layer and the substrate acts to influence the energy level alignment. These results indicate that the entire system must be considered to determine the impact of a variety of electronic factors that act to determine the tunnel barrier.


Assuntos
Carbono/química , Técnicas Eletroquímicas/métodos , Hidrocarbonetos Aromáticos/química , Modelos Químicos , Condutividade Elétrica , Eletrodos , Espectroscopia Fotoeletrônica
18.
J Am Chem Soc ; 135(26): 9584-7, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23782345

RESUMO

Molecular electronics seeks to build circuitry using organic components with at least one dimension in the nanoscale domain. Progress in the field has been inhibited by the difficulty in determining the energy levels of molecules after being perturbed by interactions with the conducting contacts. We measured the photocurrent spectra for large-area aliphatic and aromatic molecular tunnel junctions with partially transparent copper top contacts. Where no molecular absorption takes place, the photocurrent is dominated by internal photoemission, which exhibits energy thresholds corresponding to interfacial transport barriers, enabling their direct measurement in a functioning junction.

19.
J Am Chem Soc ; 135(35): 12972-5, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23941647

RESUMO

Bilayer molecular junctions were fabricated by using the alkyne/azide "click" reaction on a carbon substrate, followed by deposition of a carbon top contact in a crossbar configuration. The click reaction on an alkyne layer formed by diazonium reduction permitted incorporation of a range of molecules into the resulting bilayer, including alkane, aromatic, and redox-active molecules, with high yield (>90%) and good reproducibility. Detailed characterization of the current-voltage behavior of bilayer molecular junctions indicated that charge transport is consistent with tunneling, but that the effective barrier does not strongly vary with molecular structure for the series of molecules studied.

20.
J Am Chem Soc ; 135(28): 10218-21, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23805821

RESUMO

Quantum interference in cross-conjugated molecules embedded in solid-state devices was investigated by direct current-voltage and differential conductance transport measurements of anthraquinone (AQ)-based large area planar junctions. A thin film of AQ was grafted covalently on the junction base electrode by diazonium electroreduction, while the counter electrode was directly evaporated on top of the molecular layer. Our technique provides direct evidence of a large quantum interference effect in multiple CMOS compatible planar junctions. The quantum interference is manifested by a pronounced dip in the differential conductance close to zero voltage bias. The experimental signature is well developed at low temperature (4 K), showing a large amplitude dip with a minimum >2 orders of magnitude lower than the conductance at higher bias and is still clearly evident at room temperature. A temperature analysis of the conductance curves revealed that electron-phonon coupling is the principal decoherence mechanism causing large conductance oscillations at low temperature.


Assuntos
Antraquinonas/química , Teoria Quântica , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA