Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054310

RESUMO

The primary objective was to examine the role of pelvic fluid observed during transvaginal ultrasonography (TVS) in identifying ovarian malignancy. A single-institution, observational study was conducted within the University of Kentucky Ovarian Cancer Screening trial from January 1987 to September 2019. We analyzed true-positive (TP), false-positive (FP), true-negative (TN), and false-negative (FN) groups for the presence of pelvic fluid during screening encounters. Measured outcomes were the presence and duration of fluid over successive screening encounters. Of the 48,925 women surveyed, 2001 (4.1%) had pelvic fluid present during a TVS exam. The odds ratio (OR) of detecting fluid in the comparison group (TN screen; OR = 1) significantly differed from that of the FP cases (benign pathology; OR: 13.4; 95% confidence interval (CI): 9.1-19.8), the TP cases with a low malignant potential (LMP; OR: 28; 95% CI: 26.5-29.5), TP ovarian cancer cases (OR: 50.4; 95% CI: 27.2-93.2), and FN ovarian cancer cases (OR: 59.3; 95% CI: 19.7-178.1). The mean duration that pelvic fluid was present for women with TN screens was 2.2 ± 0.05 encounters, lasting 38.7 ± 1.3 months. In an asymptomatic screening population, free fluid identified in TVS exams was more associated with ovarian malignancy than in the control group or benign ovarian tumors. While pelvic free fluid may not solely discriminate malignancy from non-malignancy, it appears to be clinically relevant and warrants thoughtful consideration.

2.
PLoS One ; 16(8): e0254205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347777

RESUMO

Conventional frontline treatment for ovarian cancer consists of successive chemotherapy cycles of paclitaxel and platinum. Despite the initial favorable responses for most patients, chemotherapy resistance frequently leads to recurrent or refractory disease. New treatment strategies that circumvent or prevent mechanisms of resistance are needed to improve ovarian cancer therapy. We established in vitro paclitaxel-resistant ovarian cancer cell line and organoid models. Gene expression differences in resistant and sensitive lines were analyzed by RNA sequencing. We manipulated candidate genes associated with paclitaxel resistance using siRNA or small molecule inhibitors, and then screened the cells for paclitaxel sensitivity using cell viability assays. We used the Bliss independence model to evaluate the anti-proliferative synergy for drug combinations. ABCB1 expression was upregulated in paclitaxel-resistant TOV-21G (q < 1x10-300), OVCAR3 (q = 7.4x10-156) and novel ovarian tumor organoid (p = 2.4x10-4) models. Previous reports have shown some tyrosine kinase inhibitors can inhibit ABCB1 function. We tested a panel of tyrosine kinase inhibitors for the ability to sensitize resistant ABCB1-overexpressing ovarian cancer cell lines to paclitaxel. We observed synergy when we combined poziotinib or lapatinib with paclitaxel in resistant TOV-21G and OVCAR3 cells. Silencing ABCB1 expression in paclitaxel-resistant TOV-21G and OVCAR3 cells reduced paclitaxel IC50 by 20.7 and 6.2-fold, respectively. Furthermore, we demonstrated direct inhibition of paclitaxel-induced ABCB1 transporter activity by both lapatinib and poziotinib. In conclusion, lapatinib and poziotinib combined with paclitaxel synergizes to inhibit the proliferation of ABCB1-overexpressing ovarian cancer cells in vitro. The addition of FDA-approved lapatinib to second-line paclitaxel therapy is a promising strategy for patients with recurrent ovarian cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lapatinib/farmacologia , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas , Quinazolinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo
3.
Anticancer Res ; 38(10): 5717-5724, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30275192

RESUMO

BACKGROUND/AIM: Cinobufotalin (CINO), a cardiotonic steroid, has been used as an anticancer agent. This study assessed the cell-specific effect of CINO on SK-OV-3, CRL-1978 and CRL-11731 ovarian cancer cells which differ in terms of their respective karyotypes. MATERIALS AND METHODS: Cell cultures were treated with CINO (0.1, 1, 5 and 10 µM) for 24, 48, and 72 h. Cell proliferation, migration, and invasion were measured using CellTiter, Cytoselect, and FluoroBlock assays, respectively. Expression of proliferating cell nuclear antigen (PCNA) was evaluated by western blot analysis. Cell viability was determined by fluorescence-activated cell sorting. Immunofluorescence was performed using Annexin-V staining and fluorescein isothiocyanate (FITC). Mitochondrial membrane potential (MMP) was measured using MitoTracker™ Red. RESULTS: CINO at 0.5 µM inhibited SK-OV-3, CRL-1978, and CRL-11731 proliferation, migration, and invasion. Each cell type differed in response to CINO doses for PCNA, Annexin-V expression and MMP. CONCLUSION: The antineoplastic property of CINO is consistent, but its mode of action varies among cell lines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bufanolídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA