Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 100(25): 252001, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18643654

RESUMO

Many beyond the standard model theories include a stable dark matter candidate that yields missing or invisible energy in collider detectors. If observed at the CERN Large Hadron Collider, we must determine if its mass and other properties (and those of its partners) predict the correct dark matter relic density. We give a new procedure for determining its mass with small error.

2.
Phys Rev Lett ; 90(3): 031601, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12570482

RESUMO

In models with a low quantum gravity scale, fast proton decay can be avoided by localizing quarks and leptons to separated positions in an extra 1/TeV sized dimension with gauge and Higgs fields living throughout. Black holes with masses of the order of the quantum gravity scale are therefore expected to evaporate nonuniversally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA