Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(30): 39969-39980, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024341

RESUMO

Cellular agriculture, an alternative and innovative approach to sustainable food production, has gained momentum in recent years. However, there is limited research into the production of cultivated seafood. Here, we investigated the ability of fish mackerel cells (Scomber scombrus) to adhere to plant, algal and fungal-based biomaterial scaffolds, aiming to optimize the cultivation of fish cells for use in cellular agriculture. A mackerel cell line was utilized, and metabolic assays and confocal imaging were utilized to track cell adhesion, growth, and differentiation on the different biomaterials. The mackerel cells adhered and grew on gelatin (positive control), zein, and soy proteins, as well as on alginate, chitosan, and cellulose polysaccharides. The highest adhesion and growth were on the zein and chitosan substrates, apart from the gelatin control. These findings provide a blueprint to enhance scaffold selection and design, contributing to the broader field of cellular agriculture through the development of scalable and eco-conscious solutions for meeting the growing global demand for seafood.


Assuntos
Materiais Biocompatíveis , Adesão Celular , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular/efeitos dos fármacos , Gelatina/química , Quitosana/química , Fungos/metabolismo , Fungos/química , Plantas/química , Plantas/metabolismo , Plantas/microbiologia , Linhagem Celular , Alginatos/química , Peixes , Alicerces Teciduais/química
2.
Sci Rep ; 13(1): 9554, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308546

RESUMO

Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Neuropeptídeos , Humanos , Animais , Ratos , Controle Glicêmico , Redução de Peso , Peptídeo YY
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA