Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Genomics ; 24(1): 35, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658473

RESUMO

BACKGROUND: Thousands of years of natural and artificial selection since the domestication of the horse has shaped the distinctive genomes of Chinese Mongolian horse populations. Consequently, genomic signatures of selection can provide insights into the human-mediated selection history of specific traits and evolutionary adaptation to diverse environments. Here, we used genome-wide SNPs from five distinct Chinese Mongolian horse populations to identify genomic regions under selection for the population-specific traits, gait, black coat colour, and hoof quality. Other global breeds were used to identify regional-specific signatures of selection. RESULTS: We first identified the most significant selection peak for the Wushen horse in the region on ECA23 harbouring DMRT3, the major gene for gait. We detected selection signatures encompassing several genes in the Baicha Iron Hoof horse that represent good biological candidates for hoof health, including the CSPG4, PEAK1, EXPH5, WWP2 and HAS3 genes. In addition, an analysis of regional subgroups (Asian compared to European) identified a single locus on ECA3 containing the ZFPM1 gene that is a marker of selection for the major domestication event leading to the DOM2 horse clade. CONCLUSIONS: Genomic variation at these loci in the Baicha Iron Hoof may be leveraged in other horse populations to identify animals with superior hoof health or those at risk of hoof-related pathologies. The overlap between the selection signature in Asian horses with the DOM2 selection peak raises questions about the nature of horse domestication events, which may have involved a prehistoric clade other than DOM2 that has not yet been identified.


Assuntos
Casco e Garras , Cavalos , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Genoma , Cavalos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Ubiquitina-Proteína Ligases/genética , Adaptação Biológica/genética
2.
Anim Genet ; 54(3): 408-411, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36843349

RESUMO

The proportion of the genome containing runs of homozygosity (ROH) affects production traits in livestock populations. In European and Australasian Thoroughbreds inbreeding, quantified using ROH (FROH ), is associated with the probability of ever racing. Here, we measured FROH using 333 K SNP genotypes from 768 Thoroughbred horses born in North America to evaluate the effect of inbreeding on racing traits in that region. Among North American horses, FROH was not associated (p = 0.518) with the probability of ever racing but was significantly associated with the number of race starts (p = 0.002). Among raced horses, those with a 10% higher FROH than the mean inbreeding coefficient were predicted to have 3.5 fewer race starts compared to horses with a mean inbreeding coefficient. Considering the trend of increasing inbreeding and a decline in the average number of race starts per runner in North America, mitigating inbreeding in the population could positively influence racing durability.


Assuntos
Depressão por Endogamia , Cavalos , Animais , Genótipo , Homozigoto , Endogamia , América do Norte , Polimorfismo de Nucleotídeo Único
3.
Anim Genet ; 54(4): 457-469, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36971191

RESUMO

Behavioural plasticity enables horses entering an exercise training programme to adapt with reduced stress. We characterised SNPs associated with behaviour in yearling Thoroughbred horses using genomics analyses for two phenotypes: (1) handler-assessed coping with early training events [coping] (n = 96); and (2) variation in salivary cortisol concentration at the first backing event [cortisol] (n = 34). Using RNA-seq derived gene expression data for amygdala and hippocampus tissues from n = 2 Thoroughbred stallions, we refined the SNPs to those with functional relevance to behaviour by cross-referencing to the 500 most highly expressed genes in each tissue. The SNPs of high significance (q < 0.01) were in proximity to genes (coping - GABARAP, NDM, OAZ1, RPS15A, SPARCL1, VAMP2; cortisol - CEBPA, COA3, DUSP1, HNRNPH1, RACK1) with biological functions in social behaviour, autism spectrum disorder, suicide, stress-induced anxiety and depression, Alzheimer's disease, neurodevelopmental disorders, neuroinflammatory disease, fear-induced behaviours and alcohol and cocaine addiction. The strongest association (q = 0.0002) was with NDN, a gene previously associated with temperament in cattle. This approach highlights functionally relevant genes in the behavioural adaptation of Thoroughbred horses that will contribute to the development of genetic markers to improve racehorse welfare.


Assuntos
Transtorno do Espectro Autista , Hidrocortisona , Cavalos/genética , Animais , Masculino , Bovinos , Genômica , Fenótipo
4.
Proc Biol Sci ; 289(1977): 20220487, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765835

RESUMO

Small effective population sizes and active inbreeding can lead to inbreeding depression due to deleterious recessive mutations exposed in the homozygous state. The Thoroughbred racehorse has low levels of population genetic diversity, but the effects of genomic inbreeding in the population are unknown. Here, we quantified inbreeding based on runs of homozygosity (ROH) using 297 K SNP genotypes from 6128 horses born in Europe and Australia, of which 13.2% were unraced. We show that a 10% increase in inbreeding (FROH) is associated with a 7% lower probability of ever racing. Moreover, a ROH-based genome-wide association study identified a haplotype on ECA14 which, in its homozygous state, is linked to a 32.1% lower predicted probability of ever racing, independent of FROH. The haplotype overlaps a candidate gene, EFNA5, that is highly expressed in cartilage tissue, which when damaged is one of the most common causes of catastrophic musculoskeletal injury in racehorses. Genomics-informed breeding aiming to reduce inbreeding depression and avoid damaging haplotype carrier matings will improve population health and racehorse welfare.


Assuntos
Depressão por Endogamia , Animais , Estudo de Associação Genômica Ampla/veterinária , Cavalos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Probabilidade
5.
BMC Genomics ; 18(1): 595, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28793853

RESUMO

BACKGROUND: A single bout of exercise induces changes in gene expression in skeletal muscle. Regular exercise results in an adaptive response involving changes in muscle architecture and biochemistry, and is an effective way to manage and prevent common human diseases such as obesity, cardiovascular disorders and type II diabetes. However, the biomolecular mechanisms underlying such responses still need to be fully elucidated. Here we performed a transcriptome-wide analysis of skeletal muscle tissue in a large cohort of untrained Thoroughbred horses (n = 51) before and after a bout of high-intensity exercise and again after an extended period of training. We hypothesized that regular high-intensity exercise training primes the transcriptome for the demands of high-intensity exercise. RESULTS: An extensive set of genes was observed to be significantly differentially regulated in response to a single bout of high-intensity exercise in the untrained cohort (3241 genes) and following multiple bouts of high-intensity exercise training over a six-month period (3405 genes). Approximately one-third of these genes (1025) and several biological processes related to energy metabolism were common to both the exercise and training responses. We then developed a novel network-based computational analysis pipeline to test the hypothesis that these transcriptional changes also influence the contextual molecular interactome and its dynamics in response to exercise and training. The contextual network analysis identified several important hub genes, including the autophagosomal-related gene GABARAPL1, and dynamic functional modules, including those enriched for mitochondrial respiratory chain complexes I and V, that were differentially regulated and had their putative interactions 're-wired' in the exercise and/or training responses. CONCLUSION: Here we have generated for the first time, a comprehensive set of genes that are differentially expressed in Thoroughbred skeletal muscle in response to both exercise and training. These data indicate that consecutive bouts of high-intensity exercise result in a priming of the skeletal muscle transcriptome for the demands of the next exercise bout. Furthermore, this may also lead to an extensive 're-wiring' of the molecular interactome in both exercise and training and include key genes and functional modules related to autophagy and the mitochondrion.


Assuntos
Adaptação Fisiológica , Autofagossomos/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Perfilação da Expressão Gênica , Cavalos , Mitocôndrias/genética , Análise de Sequência de RNA
6.
PLoS Genet ; 9(1): e1003211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349635

RESUMO

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an F(ST)-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Assuntos
Estudo de Associação Genômica Ampla , Cavalos/genética , Miostatina/genética , Seleção Genética , Animais , Evolução Biológica , Cruzamento , Genótipo , Haplótipos , Fenótipo , Polimorfismo de Nucleotídeo Único
7.
PLoS One ; 18(4): e0284102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023093

RESUMO

Thoroughbred horses are bred for competitive racing and undergo intense training regimes. The maintenance of physical soundness and desirable behavioural characteristics are critical to the longevity of a racing career. Horses intended for Flat racing generally enter training as yearlings and undergo introductory training prior to exercise conditioning for racing. This period requires rapid adjustment to a novel environment. As a prey animal, a horse's 'fight-or-flight' response is highly adapted, in which a well-understood component of this response, the hypothalamic-pituitary-axis, is activated in response to a stress stimulus, releasing cortisol. In the Thoroughbred, a significant difference in salivary cortisol concentrations between pre- and post-first time ridden (i.e., first backing) by a jockey have previously been identified. Here, to test the hypothesis that salivary cortisol concentrations may be used to objectively detect individual variations in the acute physiological stress response we investigate individual variation in cortisol response to training milestones. Saliva samples were collected from a cohort of n = 96 yearling Flat racehorses, at the same training yard, across three timepoints at rest: before entering the training yard (n = 66), within three days of entry to the training yard (n = 67) and following 2-3 weeks in the training yard (n = 50). Salivary cortisol concentration was measured using an ELISA. There was no significant difference in cortisol concentration (ANOVA, P > 0.05) across the samples collected at timepoints at rest. Samples were also collected before and 30 minutes after exposure to three novel training events: first time long-reined (n = 6), first time backed by a jockey (n = 34), and first time ridden on the gallops (n = 10). Mean salivary cortisol concentration after all three novel training events was significantly higher than prior to the training event (Paired t-test, P <0.005). The ranges of post-event salivary cortisol concentration across all timepoints suggest individual variation in the measured stress response, reflecting individual differences in stress response to the early training environment. This measure may be used as an objective assessment of the stress response of Thoroughbred racehorses during training.


Assuntos
Doenças dos Cavalos , Condicionamento Físico Animal , Corrida , Cavalos , Animais , Hidrocortisona , Exame Físico
8.
Anim Genet ; 43(6): 810-2, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22497477

RESUMO

Myostatin, encoded by the MSTN gene, is a member of the TGF-ß superfamily that regulates skeletal muscle development. A MSTN SNP significantly associated with Thoroughbred horse racing phenotypes has recently been identified as well as significant reductions in Thoroughbred skeletal muscle gene expression for three transcripts 400-1500 base pairs downstream of the MSTN gene following a period of training. Together, these findings indicate that MSTN genotypes may influence MSTN gene expression. To investigate this, MSTN mRNA expression was measured in biopsies from the middle gluteal muscle from 60 untrained yearling Thoroughbreds (C/C, n = 15; C/T, n = 28; T/T, n = 17) using two independent real-time qRT-PCR assays. MSTN gene expression was also evaluated in a subset (N = 33) of these animals using samples collected after a ten-month period of training. A significant association was observed between genotype and mRNA abundance for the untrained horses (assay I, P = 0.0237; assay II, P = 0.003559), with the C/C cohort having the highest MSTN mRNA levels, the T/T group the lowest levels and the C/T group intermediate levels. Following training, there was a significant decrease in MSTN mRNA (-3.35-fold; P = 6.9 × 10(-7) ), which was most apparent for the C/C cohort (-5.88-fold, P = 0.001). These data demonstrate the tight relationship between phenotype, genotype and gene expression at the MSTN gene in Thoroughbred racehorses.


Assuntos
Cavalos/genética , Atividade Motora/genética , Músculo Esquelético/metabolismo , Miostatina/genética , Condicionamento Físico Animal/fisiologia , Animais , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Genótipo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Commun Biol ; 5(1): 1320, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513809

RESUMO

Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Cavalos/genética , Animais , Fenótipo , Genômica , Análise de Sequência de DNA
10.
Physiol Genomics ; 40(2): 83-93, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19861432

RESUMO

Intense selection for elite racing performance in the Thoroughbred horse (Equus caballus) has resulted in a number of adaptive physiological phenotypes relevant to exercise; however, the underlying molecular mechanisms responsible for these characteristics are not well understood. Adaptive changes in mRNA expression in equine skeletal muscle were investigated by real-time qRT-PCR for a panel of candidate exercise-response genes following a standardized incremental-step treadmill exercise test in eight untrained Thoroughbred horses. Biopsy samples were obtained from the gluteus medius before, immediately after, and 4 h after exercise. Significant (P < 0.05) differences in gene expression were detected for six genes (CKM, COX4I1, COX4I2, PDK4, PPARGC1A, and SLC2A4) 4 h after exercise. Investigation of relationships between mRNA and velocity at maximum heart rate (VHR(max)) and peak postexercise plasma lactate concentration ([La]T(1)) revealed significant (P < 0.05) associations with postexercise COX4I1 and PPARCG1A expression and between [La]T(1) and basal COX4I1 expression. Gene expression changes were investigated in a second cohort of horses after a 10 mo period of training. In resting samples, COX4I1 gene expression had significantly increased following training, and, after exercise, significant differences were identified for COX4I2, PDK4, and PPARGC1A. Significant relationships with VHR(max) and [La]T(1) were detected for PPARGC1A and COX4I1. These data highlight the roles of genes responsible for the regulation of oxygen-dependent metabolism, glucose metabolism, and fatty acid utilization in equine skeletal muscle adaptation to exercise.


Assuntos
Expressão Gênica , Cavalos/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Perfilação da Expressão Gênica , Ácido Láctico/sangue , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Treinamento Resistido
11.
BMC Genomics ; 11: 552, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20932346

RESUMO

BACKGROUND: Thoroughbred horses have been selected for traits contributing to speed and stamina for centuries. It is widely recognized that inherited variation in physical and physiological characteristics is responsible for variation in individual aptitude for race distance, and that muscle phenotypes in particular are important. RESULTS: A genome-wide SNP-association study for optimum racing distance was performed using the EquineSNP50 Bead Chip genotyping array in a cohort of n = 118 elite Thoroughbred racehorses divergent for race distance aptitude. In a cohort-based association test we evaluated genotypic variation at 40,977 SNPs between horses suited to short distance (≤ 8 f) and middle-long distance (> 8 f) races. The most significant SNP was located on chromosome 18: BIEC2-417495 ~690 kb from the gene encoding myostatin (MSTN) [P(unadj.) = 6.96 x 10⁻6]. Considering best race distance as a quantitative phenotype, a peak of association on chromosome 18 (chr18:65809482-67545806) comprising eight SNPs encompassing a 1.7 Mb region was observed. Again, similar to the cohort-based analysis, the most significant SNP was BIEC2-417495 (P(unadj.) = 1.61 x 10⁻9; P(Bonf.) = 6.58 x 10⁻5). In a candidate gene study we have previously reported a SNP (g.66493737C>T) in MSTN associated with best race distance in Thoroughbreds; however, its functional and genome-wide relevance were uncertain. Additional re-sequencing in the flanking regions of the MSTN gene revealed four novel 3' UTR SNPs and a 227 bp SINE insertion polymorphism in the 5' UTR promoter sequence. Linkage disequilibrium was highest between g.66493737C>T and BIEC2-417495 (r² = 0.86). CONCLUSIONS: Comparative association tests consistently demonstrated the g.66493737C>T SNP as the superior variant in the prediction of distance aptitude in racehorses (g.66493737C>T, P = 1.02 x 10⁻¹°; BIEC2-417495, P(unadj.) = 1.61 x 10⁻9). Functional investigations will be required to determine whether this polymorphism affects putative transcription-factor binding and gives rise to variation in gene and protein expression. Nonetheless, this study demonstrates that the g.66493737C>T SNP provides the most powerful genetic marker for prediction of race distance aptitude in Thoroughbreds.


Assuntos
Cruzamento , Estudo de Associação Genômica Ampla/métodos , Cavalos/genética , Miostatina/genética , Polimorfismo de Nucleotídeo Único/genética , Esportes , Animais , Pareamento de Bases/genética , Sequência de Bases , Cromossomos de Mamíferos/genética , Estudos de Coortes , DNA Intergênico/genética , Haplótipos/genética , Desequilíbrio de Ligação/genética , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
12.
BMC Genomics ; 11: 398, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20573200

RESUMO

BACKGROUND: Digital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T(1) - untrained, (9 +/- 0.5 months old) and T(2) - trained (20 +/- 0.7 months old). RESULTS: The most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease.Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton. CONCLUSION: Exercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.


Assuntos
Perfilação da Expressão Gênica/métodos , Cavalos/genética , Cavalos/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Animais , Feminino , Biblioteca Gênica , Humanos , Masculino , Camundongos , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
13.
PLoS One ; 15(2): e0227212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32049967

RESUMO

Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Australasia and Japan. Regional preferences for certain traits have resulted in phenotypic variation that may result from adaptation to the local racing ecosystem. Here, we test the hypothesis that genes selected for regional phenotypic variation may be identified by analysis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a composite selection signals (CSS) analysis were on ECA6 (34.75-34.85 Mb), ECA14 (33.2-33.52 Mb and 35.52-36.94 Mb) and ECA16 (24.28-26.52 Mb) in regions containing candidate genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF, SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response (NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs contained within the single association peak (33.2-35.6 Mb) overlapped with the ECA14 CSS signals and spanned a protocadherin gene cluster. Association tests using higher density SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene associated with elite racing performance (n = 922). These results indicate that there may be differential selection for racing performance under racing and management conditions that are specific to certain geographic racing regions. In Australia breeders have principally selected horses for favourable genetic variants at loci containing genes that modulate behaviour, locomotion and skeletal muscle physiology that together appear to be contributing to early two-year-old speed.


Assuntos
Cavalos/genética , Locomoção/genética , Condicionamento Físico Animal , Animais , Austrália , Genoma , Estudo de Associação Genômica Ampla/métodos , Fenótipo
14.
Sci Rep ; 10(1): 466, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949252

RESUMO

The Thoroughbred horse is a highly valued domestic animal population under strong selection for athletic phenotypes. Here we present a high resolution genomics-based analysis of inbreeding in the population that may form the basis for evidence-based discussion amid concerns in the breeding industry over the increasing use of small numbers of popular sire lines, which may accelerate a loss of genetic diversity. In the most comprehensive globally representative sample of Thoroughbreds to-date (n = 10,118), including prominent stallions (n = 305) from the major bloodstock regions of the world, we show using pan-genomic SNP genotypes that there has been a highly significant decline in global genetic diversity during the last five decades (FIS R2 = 0.942, P = 2.19 × 10-13; FROH R2 = 0.88, P = 1.81 × 10-10) that has likely been influenced by the use of popular sire lines. Estimates of effective population size in the global and regional populations indicate that there is some level of regional variation that may be exploited to improve global genetic diversity. Inbreeding is often a consequence of selection, which in managed animal populations tends to be driven by preferences for cultural, aesthetic or economically advantageous phenotypes. Using a composite selection signals approach, we show that centuries of selection for favourable athletic traits among Thoroughbreds acts on genes with functions in behaviour, musculoskeletal conformation and metabolism. As well as classical selective sweeps at core loci, polygenic adaptation for functional modalities in cardiovascular signalling, organismal growth and development, cellular stress and injury, metabolic pathways and neurotransmitters and other nervous system signalling has shaped the Thoroughbred athletic phenotype. Our results demonstrate that genomics-based approaches to identify genetic outcrosses will add valuable objectivity to augment traditional methods of stallion selection and that genomics-based methods will be beneficial to actively monitor the population to address the marked inbreeding trend.


Assuntos
Genética Populacional , Genoma , Cavalos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Genômica , Genótipo , Fenótipo
15.
BMC Genomics ; 10: 638, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-20042072

RESUMO

BACKGROUND: Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise. RESULTS: Skeletal muscle biopsies were taken from the gluteus medius before (T(0)), immediately after (T(1)) and four hours after (T(2)) exercise. Statistically significant differences in mRNA abundance between time points (T(0) vs T(1) and T(0) vs T(2)) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T(1) (P < 0.05), by T(2) 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T(2)) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T(1), using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy. CONCLUSIONS: This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.


Assuntos
Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Western Blotting , Cavalos , Hipertrofia/patologia , Músculo Esquelético/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica/genética
16.
PLoS One ; 8(1): e54997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383025

RESUMO

Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection.


Assuntos
Genômica , Cavalos/genética , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Análise por Conglomerados , Cavalos/classificação , Análise de Componente Principal
17.
J Appl Physiol (1985) ; 112(1): 86-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22016373

RESUMO

Sequence variation at the equine myostatin gene (MSTN) locus has previously been shown to have a singular genomic influence on optimum race distance in Thoroughbred racehorses. Myostatin, encoded by the MSTN gene, is a member of the TGF-ß superfamily that regulates skeletal muscle development in a range of mammalian species including the horse. In the Thoroughbred, the C-allele at the g.66493737C/T SNP has been found at significantly higher frequency in subgroups of the population that are suited to fast, short distance, sprint races and also influences body composition phenotypes. We investigated the influence of the g.66493737C/T SNP on speed indexes measured in a cohort of n = 85 Thoroughbred horses-in-training. We found significant associations between genotypes at the g.66493737C/T SNP and all measured speed variables: Dist(6) [distance travelled during 6 s before and after maximal velocity (V(max)); P = 0.0040], V(maxt) (duration at V(max); P = 0.0249), V(max) (P = 0.0265), Dist(6b) (distance travelled during 6 s before V(max); P = 0.0032), and Dist(6a)(distance travelled during 6 s after V(max); P = 0.0317). For each measure, horses with the C/C and C/T genotypes outperformed T/T horses, indicating the requirement for at least one C-allele to improve speed. For the most significantly associated variables (Dist(6) and Dist(6b)) the C/C cohort performed better than the T/T cohort with the heterozygotes intermediate, indicating a dose-dependent manifestation. These findings clearly indicate that variation at the MSTN gene influences speed in Thoroughbred horses.


Assuntos
Genótipo , Miostatina/genética , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Feminino , Variação Genética , Cavalos , Masculino , Esportes/fisiologia
18.
Nat Commun ; 3: 643, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22273681

RESUMO

Selective breeding for speed in the racehorse has resulted in an unusually high frequency of the C-variant (g.66493737C/T) at the myostatin gene (MSTN) in cohorts of the Thoroughbred horse population that are best suited to sprint racing. Here we show using a combination of molecular- and pedigree-based approaches in 593 horses from 22 Eurasian and North-American horse populations, museum specimens from 12 historically important Thoroughbred stallions (b.1764-1930), 330 elite-performing modern Thoroughbreds and 42 samples from three other equid species that the T-allele was ancestral and there was a single introduction of the C-allele at the foundation stages of the Thoroughbred from a British-native mare. Furthermore, we show that although the C-allele was rare among the celebrated racehorses of the 18th and 19th centuries, it has proliferated recently in the population via the stallion Nearctic (b.1954), the sire of the most influential stallion of modern time, Northern Dancer (b.1961).


Assuntos
Cavalos/genética , Cavalos/fisiologia , Alelos , Animais , Cruzamento , Feminino , Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Linhagem , Análise de Sequência de DNA
19.
Vet Immunol Immunopathol ; 142(1-2): 64-71, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21605915

RESUMO

Campylobacter jejuni colonises the caecum of more than 90% of commercial chickens. Even though colonisation is asymptomatic, we hypothesised that it is mediated by activation of several biological pathways. We therefore used chicken-specific 20K oligonucleotide microarrays to examine global gene expression in C. jejuni-challenged birds. Microarray results demonstrate small but significant fold-changes in expression of 270 genes 20 h post-challenge, corresponding to a wide range of biological processes including cell growth, nutrient metabolism and immunological activity. Expression of NOX1 (2.3-fold) and VCAM1 (1.5-fold) were significantly increased in colonised birds (P<0.05), indicating oxidative burst and endothelial cell activation, respectively. Microarray results, supplemented by qRT-PCR analyses demonstrated increased TOPK (1.9-fold), IL17 (3.6-fold), IL21 (2.1-fold), IL7R (4-fold) and CTLA4 (2.5-fold) gene expression (P<0.05), which was suggestive of T cell mediated activity. Combined these results suggest that C. jejuni has nominal effects on global caecal gene expression in the chicken but significant changes detected are suggestive of a protective intestinal T cell response.


Assuntos
Infecções por Campylobacter/virologia , Campylobacter jejuni/imunologia , Ceco/microbiologia , Perfilação da Expressão Gênica/veterinária , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/imunologia , Ceco/imunologia , Ceco/metabolismo , Galinhas/genética , Galinhas/imunologia , Galinhas/microbiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Genes/genética , Genes/imunologia , Imunidade/genética , Imunidade/imunologia , Análise de Sequência com Séries de Oligonucleotídeos/veterinária , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia
20.
PLoS One ; 5(1): e8645, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20098749

RESUMO

Variants of the MSTN gene encoding myostatin are associated with muscle hypertrophy phenotypes in a range of mammalian species, most notably cattle, dogs, mice, and humans. Using a sample of registered Thoroughbred horses (n = 148), we have identified a novel MSTN sequence polymorphism that is strongly associated (g.66493737C>T, P = 4.85x10(-8)) with best race distance among elite racehorses (n = 79). This observation was independently validated (P = 1.91x10(-6)) in a resampled group of Thoroughbreds (n = 62) and in a cohort of Thoroughbreds (n = 37, P = 0.0047) produced by the same trainer. We observed that C/C horses are suited to fast, short-distance races; C/T horses compete favorably in middle-distance races; and T/T horses have greater stamina. Evaluation of retrospective racecourse performance (n = 142) and stallion progeny performance predict that C/C and C/T horses are more likely to be successful two-year-old racehorses than T/T animals. Here we describe for the first time the identification of a gene variant in Thoroughbred racehorses that is predictive of genetic potential for an athletic phenotype.


Assuntos
Cavalos/fisiologia , Miostatina/genética , Polimorfismo de Nucleotídeo Único , Corrida , Animais , Genótipo , Cavalos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA