Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Genet ; 6(11): e1001211, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21124861

RESUMO

Cilia are important sensory organelles, which are thought to be essential regulators of numerous signaling pathways. In Caenorhabditis elegans, defects in sensory cilium formation result in a small-body phenotype, suggesting the role of sensory cilia in body size determination. Previous analyses suggest that lack of normal cilia causes the small-body phenotype through the activation of a signaling pathway which consists of the EGL-4 cGMP-dependent protein kinase and the GCY-12 receptor-type guanylyl cyclase. By genetic suppressor screening of the small-body phenotype of a cilium defective mutant, we identified a chb-3 gene. Genetic analyses placed chb-3 in the same pathway as egl-4 and gcy-12 and upstream of egl-4. chb-3 encodes a novel protein, with a zf-MYND motif and ankyrin repeats, that is highly conserved from worm to human. In chb-3 mutants, GCY-12 guanylyl cyclase visualized by tagged GFP (GCY-12::GFP) fails to localize to sensory cilia properly and accumulates in cell bodies. Our analyses suggest that decreased GCY-12 levels in the cilia of chb-3 mutants may cause the suppression of the small-body phenotype of a cilium defective mutant. By observing the transport of GCY-12::GFP particles along the dendrites to the cilia in sensory neurons, we found that the velocities and the frequencies of the particle movement are decreased in chb-3 mutant animals. How membrane proteins are trafficked to cilia has been the focus of extensive studies in vertebrates and invertebrates, although only a few of the relevant proteins have been identified. Our study defines a new regulator, CHB-3, in the trafficking process and also shows the importance of ciliary targeting of the signaling molecule, GCY-12, in sensory-dependent body size regulation in C. elegans. Given that CHB-3 is highly conserved in mammal, a similar system may be used in the trafficking of signaling proteins to the cilia of other species.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tamanho Corporal , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Cílios/enzimologia , Guanilato Ciclase/metabolismo , Dedos de Zinco , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Comportamento Animal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , GMP Cíclico/metabolismo , Análise Mutacional de DNA , Dendritos/metabolismo , Genes de Helmintos/genética , Genes Supressores , Proteínas de Fluorescência Verde/metabolismo , Humanos , Mutação/genética , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais
2.
PLoS Genet ; 6(5): e1000972, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20523893

RESUMO

Normal aging leads to an inexorable decline in motor performance, contributing to medical morbidity and decreased quality of life. While much has been discovered about genetic determinants of lifespan, less is known about modifiers of age-related behavioral decline and whether new gene targets may be found which extend vigorous activity, with or without extending lifespan. Using Caenorhabditis elegans, we have developed a model of declining neuromuscular function and conducted a screen for increased behavioral activity in aged animals. In this model, behavioral function suffers from profound reductions in locomotory frequency, but coordination is strikingly preserved until very old age. By screening for enhancers of locomotion at advanced ages we identified the ras-related Rag GTPase raga-1 as a novel modifier of behavioral aging. raga-1 loss of function mutants showed vigorous swimming late in life. Genetic manipulations revealed that a gain of function raga-1 curtailed behavioral vitality and shortened lifespan, while a dominant negative raga-1 lengthened lifespan. Dietary restriction results indicated that a raga-1 mutant is relatively protected from the life-shortening effects of highly concentrated food, while RNAi experiments suggested that raga-1 acts in the highly conserved target of rapamycin (TOR) pathway in C. elegans. Rag GTPases were recently shown to mediate nutrient-dependent activation of TOR. This is the first demonstration of their dramatic effects on behavior and aging. This work indicates that novel modulators of behavioral function can be identified in screens, with implications for future study of the clinical amelioration of age-related decline.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , GTP Fosfo-Hidrolases/genética , Expectativa de Vida , Natação
3.
PLoS Genet ; 6(8)2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20714347

RESUMO

The mechanisms by which ethanol and inhaled anesthetics influence the nervous system are poorly understood. Here we describe the positional cloning and characterization of a new mouse mutation isolated in an N-ethyl-N-nitrosourea (ENU) forward mutagenesis screen for animals with enhanced locomotor activity. This allele, Lightweight (Lwt), disrupts the homolog of the Caenorhabditis elegans (C. elegans) unc-79 gene. While Lwt/Lwt homozygotes are perinatal lethal, Lightweight heterozygotes are dramatically hypersensitive to acute ethanol exposure. Experiments in C. elegans demonstrate a conserved hypersensitivity to ethanol in unc-79 mutants and extend this observation to the related unc-80 mutant and nca-1;nca-2 double mutants. Lightweight heterozygotes also exhibit an altered response to the anesthetic isoflurane, reminiscent of unc-79 invertebrate mutant phenotypes. Consistent with our initial mapping results, Lightweight heterozygotes are mildly hyperactive when exposed to a novel environment and are smaller than wild-type animals. In addition, Lightweight heterozygotes exhibit increased food consumption yet have a leaner body composition. Interestingly, Lightweight heterozygotes voluntarily consume more ethanol than wild-type littermates. The acute hypersensitivity to and increased voluntary consumption of ethanol observed in Lightweight heterozygous mice in combination with the observed hypersensitivity to ethanol in C. elegans unc-79, unc-80, and nca-1;nca-2 double mutants suggests a novel conserved pathway that might influence alcohol-related behaviors in humans.


Assuntos
Peso Corporal , Etanol/metabolismo , Camundongos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Canais Iônicos/genética , Canais Iônicos/metabolismo , Masculino , Proteínas de Membrana , Camundongos/genética , Camundongos/crescimento & desenvolvimento , Camundongos/fisiologia , Camundongos Endogâmicos C57BL , Atividade Motora
4.
PLoS Genet ; 5(12): e1000780, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019812

RESUMO

Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK) channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Complexo de Proteínas Associadas Distrofina/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculos/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cálcio , Distrofina , Eletrofisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Proteínas Mutantes
5.
Proc Natl Acad Sci U S A ; 105(52): 20982-7, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19074276

RESUMO

Alternative patterns of neural activity drive different rhythmic locomotory patterns in both invertebrates and mammals. The neuro-molecular mechanisms responsible for the expression of rhythmic behavioral patterns are poorly understood. Here we show that Caenorhabditis elegans switches between distinct forms of locomotion, or crawling versus swimming, when transitioning between solid and liquid environments. These forms of locomotion are distinguished by distinct kinematics and different underlying patterns of neuromuscular activity, as determined by in vivo calcium imaging. The expression of swimming versus crawling rhythms is regulated by sensory input. In a screen for mutants that are defective in transitioning between crawl and swim behavior, we identified unc-79 and unc-80, two mutants known to be defective in NCA ion channel stabilization. Genetic and behavioral analyses suggest that the NCA channels enable the transition to rapid rhythmic behaviors in C. elegans. unc-79, unc-80, and the NCA channels represent a conserved set of genes critical for behavioral pattern generation.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Canais Iônicos/genética , Natação/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Canais Iônicos/metabolismo
6.
Nature ; 430(7002): 891-6, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15318222

RESUMO

Muscular dystrophies are among the most common human genetic diseases and are characterized by progressive muscle degeneration. Muscular dystrophies result from genetic defects in components of the dystrophin-glycoprotein complex (DGC), a multimeric complex found in the muscle cell plasma membrane. The DGC links the intracellular cytoskeleton to the extracellular matrix and is thought to be important for maintaining the mechanical integrity of muscles and organizing signalling molecules. The exact role of the DGC in the pathogenesis of disease has, however, remained uncertain. Mutations in Caenorhabditis elegans DGC genes lead to specific defects in coordinated movement and can also cause muscle degeneration. Here we show that mutations in the gene snf-6 result in phenotypes indistinguishable from those of the DGC mutants, and that snf-6 encodes a novel acetylcholine/choline transporter. SNF-6 mediates the uptake of acetylcholine at neuromuscular junctions during periods of increased synaptic activity. SNF-6 also interacts with the DGC, and mutations in DGC genes cause a loss of SNF-6 at neuromuscular junctions. Improper clearing of acetylcholine and prolonged excitation of muscles might contribute to the pathogenesis of muscular dystrophies.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Distrofina/química , Distrofina/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Western Blotting , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Eletrofisiologia , Substâncias Macromoleculares , Dados de Sequência Molecular , Músculos/metabolismo , Músculos/fisiologia , Mutação/genética , Fenótipo , Testes de Precipitina , Ligação Proteica , Sódio/farmacologia , Simportadores/química , Simportadores/genética , Sinapses/metabolismo
7.
Neuron ; 36(6): 1091-102, 2002 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-12495624

RESUMO

The growth and behavior of higher organisms depend on the accurate perception and integration of sensory stimuli by the nervous system. We show that defects in sensory perception in C. elegans result in abnormalities in the growth of the animal and in the expression of alternative behavioral states. Our analysis suggests that sensory neurons modulate neural or neuroendocrine functions, regulating both bodily growth and behavioral state. We identify genes likely to be required for these functions downstream of sensory inputs. Here, we characterize one of these genes as egl-4, which we show encodes a cGMP-dependent protein kinase. We demonstrate that this cGMP-dependent kinase functions in neurons of C. elegans to regulate multiple developmental and behavioral processes including the orchestrated growth of the animal and the expression of particular behavioral states.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas Quinases Dependentes de GMP Cíclico/isolamento & purificação , Sistema Nervoso/crescimento & desenvolvimento , Neurônios Aferentes/metabolismo , Sensação/genética , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Comportamento Animal/fisiologia , Constituição Corporal/genética , Caenorhabditis elegans/citologia , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico , Cílios/genética , Cílios/patologia , Clonagem Molecular , Proteínas Quinases Dependentes de GMP Cíclico/genética , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Locomoção/genética , Dados de Sequência Molecular , Mutação/genética , Sistema Nervoso/citologia , Sistema Nervoso/enzimologia , Neurônios Aferentes/citologia
8.
Neuron ; 42(5): 731-43, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15182714

RESUMO

Variation in the acute response to ethanol between individuals has a significant impact on determining susceptibility to alcoholism. The degree to which genetics contributes to this variation is of great interest. Here we show that allelic variation that alters the functional level of NPR-1, a neuropeptide Y (NPY) receptor-like protein, can account for natural variation in the acute response to ethanol in wild strains of Caenorhabditis elegans. NPR-1 negatively regulates the development of acute tolerance to ethanol, a neuroadaptive process that compensates for effects of ethanol. Furthermore, dynamic changes in the NPR-1 pathway provide a mechanism for ethanol tolerance in C. elegans. This suggests an explanation for the conserved function of NPY-related pathways in ethanol responses across diverse species. Moreover, these data indicate that genetic variation in the level of NPR-1 function determines much of the phenotypic variation in adaptive behavioral responses to ethanol that are observed in natural populations.


Assuntos
Comportamento Animal/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Variação Genética/efeitos dos fármacos , Receptores de Neuropeptídeo Y/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Depressores do Sistema Nervoso Central/metabolismo , Mapeamento Cromossômico/métodos , Relação Dose-Resposta a Droga , Tolerância a Medicamentos/genética , Etanol/metabolismo , Variação Genética/genética , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Mutação , RNA Mensageiro/biossíntese , Receptores de Neuropeptídeo Y/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Comportamento Social , Especificidade da Espécie , Síndrome de Abstinência a Substâncias/fisiopatologia , Fatores de Tempo , Transformação Genética
9.
J Neurosci ; 25(46): 10671-81, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16291940

RESUMO

Serotonin (5-HT) is a neuromodulator that regulates many aspects of animal behavior, including mood, aggression, sex drive, and sleep. In vertebrates, most of the behavioral effects of 5-HT appear to be mediated by G-protein-coupled receptors (GPCRs). Here, we show that SER-1 is the 5-HT GPCR responsible for the stimulatory effects of exogenous 5-HT in two sexually dimorphic behaviors of Caenorhabditis elegans, egg laying and male ventral tail curling. Loss of ser-1 function leads to decreased egg laying in hermaphrodites and defects in the turning step of mating behavior in males. ser-1 is expressed in muscles that are postsynaptic to serotonergic neurons and are known to be required for these behaviors. Analysis of the ser-1 mutant also reveals an inhibitory effect of 5-HT on egg laying that is normally masked by SER-1-dependent stimulation. This inhibition of egg laying requires MOD-1, a 5-HT-gated chloride channel. Loss of mod-1 function in males also produces defects in ventral tail curling and enhances the turning defects in ser-1 mutant males. Sustained elevations in 5-HT levels result in behavioral adaptation to both the stimulatory and inhibitory actions of the neurotransmitter, indicating that both SER-1 and MOD-1 signaling can be modulated. Removal of wild-type animals from high levels of exogenous 5-HT produces a SER-1-dependent withdrawal response in which egg laying is significantly decreased. These studies provide insight into the role of 5-HT in behavior and the regulation of 5-HT(2) receptor function.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Oviposição/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores 5-HT1 de Serotonina/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Oviposição/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Serotonina/farmacologia , Agonistas do Receptor 5-HT1 de Serotonina , Comportamento Sexual Animal/efeitos dos fármacos , Zigoto/efeitos dos fármacos , Zigoto/fisiologia
10.
Biol Proced Online ; 6: 113-119, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15192754

RESUMO

Caenorhabditis elegans is an attractive model system for determining the targets of neuroactive compounds. Genetic screens in C. elegans provide a relatively unbiased approach to the identification of genes that are essential for behavioral effects of drugs and neuroactive compounds such as alcohol. Much work in vertebrate systems has identified multiple potential targets of ethanol but which, if any, of those candidates are responsible for the behavioral effects of alcohol is uncertain. Here we provide detailed methodology for a genetic screen for mutants of C. elegans that are resistant to the depressive effects of ethanol on locomotion and for the subsequent behavioral analysis of those mutants. The methods we describe should also be applicable for use in screening for mutants that are resistant or hypersensitive to many neuroactive compounds and for identifying the molecular targets or biochemical pathways mediating drug responses.

11.
Neurosci Lett ; 498(1): 99-103, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21565252

RESUMO

Biogenic amine systems are damaged by amphetamine abuse and in Parkinson's disease. The mechanisms mediating this damage are of high importance because of the public health impact of these problems. Here we have taken advantage of the Caenorhabditis elegans nematode model system to investigate genetic modifiers of biogenic amine toxicity. In a forward genetic screen, we identified a mutant resistant to the toxic effects of dopamine. This mutant was also resistant to toxic doses of methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA). In addition, this mutation conferred resistance to 6-hydroxydopamine damage to dopaminergic neurons in a Parkinson's disease model. Resistance was due to a mutation in the nsy-1 gene, orthologous to the mammalian ASK-1 MAPKKK. NSY-1 is in the highly conserved p38 MAP kinase pathway, which plays a crucial role in C. elegans innate immunity, suggesting that this pathway may play a role in biogenic amine toxicity system damage due to amphetamines and in the pathogenesis of Parkinson's disease in higher organisms.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Dopaminérgicos/toxicidade , Dopamina/toxicidade , Imunidade Inata/fisiologia , Proteínas Serina-Treonina Quinases/genética , Serotoninérgicos/toxicidade , Transdução de Sinais/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Metanfetamina/toxicidade , Mutação , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
WormBook ; : 1-6, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20432508

RESUMO

Ethanol is a widely used drug whose mechanism of action, despite intensive study, remains uncertain. Biochemical and electrophysiological experiments have identified receptors and ion channels whose functions are altered at physiological concentrations of ethanol. Yet, the contribution of these potential targets to its intoxicating or behavioral effects is unclear. Unbiased forward genetic screens for resistant or hypersensitive mutants represent an attractive means of identifying the relevant molecular targets or biochemical pathways mediating the behavioral effects of neuroactive compounds. C. elegans has proven to be a particularly useful system for such studies. The behavioral effects of ethanol occur at equivalent tissue concentrations in mammals and in C. elegans, suggesting the existence of conserved drug targets in the nervous system. This chapter reviews the results of studies directed toward determining the mechanisms of action of ethanol. Studies of the neural adaptations that occur with prolonged drug exposure are also discussed. The methods used to characterize the actions of ethanol should be applicable to the characterizations of other compounds that affect the behavior of C. elegans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Etanol/farmacologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/fisiologia , Tolerância a Medicamentos , Expressão Gênica/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Receptores de Neuropeptídeo Y/fisiologia
13.
Cell ; 115(6): 655-66, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14675531

RESUMO

The activities of many neuronal proteins are modulated by ethanol, but the fundamental mechanisms underlying behavioral effects of ethanol remain unclear. To identify mechanisms responsible for intoxication, we screened for Caenorhabditis elegans mutants with altered behavioral responses to ethanol. We found that slo-1 mutants, which were previously recognized as having slightly uncoordinated movement, are highly resistant to ethanol in two behavioral assays. Numerous loss-of-function slo-1 alleles emerged from our screens, indicating that slo-1 has a central role in ethanol responses. slo-1 encodes the BK potassium channel. Electrophysiological analysis shows that ethanol activates the channel in vivo, which would inhibit neuronal activity. Moreover, behaviors of slo-1 gain-of-function mutants resemble those of ethanol-intoxicated animals. These results demonstrate that selective activation of BK channels is responsible for acute intoxicating effects of ethanol in C. elegans. BK channel activation may explain a variety of behavioral responses to ethanol in invertebrate and vertebrate systems.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Etanol/farmacologia , Neurônios/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Canais de Potássio Cálcio-Ativados/deficiência , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Dados de Sequência Molecular , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Mutação/efeitos dos fármacos , Mutação/genética , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA