Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1853(9): 2066-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25541281

RESUMO

Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca²âº. Interestingly, while mitochondrial Ca²âº uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca²âº uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Dendritos/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , NAD/metabolismo
2.
J Med Entomol ; 61(3): 678-685, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38366896

RESUMO

Volatile pyrethroids are effective in reducing mosquito populations and repelling vectors away from hosts. However, many gaps in knowledge exist for the sublethal impacts of volatile pyrethroids on mosquitoes. To that end, transfluthrin exposures were conducted on a field strain of Aedes albopictus (Skuse) held as a laboratory colony. Dose-response analysis was conducted on both sexes at either 1-4 days old or 5-10 days old. Resultant concentration data were used to evaluate the LC20 and LC50 values in various mate pairings of treatments and controls in which either the male or female was from a selectively treated group and mated with a counterpart that was treated independently. Blood feeding proportion, delayed mortality after a 24-h recovery period, egg collection totals, and F1 larval survival were determined following transfluthrin treatment in the F0, but outcomes were not significant. In contrast, sterility was predicated on male treatment, with treated females resulting in higher overall egg viability. Treated males in the mating pair resulted in significantly lower egg viability and accelerated larval hatch in the F1. Additionally, the presence of sperm in female spermathecae was significantly diminished in test groups containing treated male mosquitoes. Male sublethal effects may be a critical determinant of a mixed population's reproductive success.


Assuntos
Aedes , Ciclopropanos , Fertilidade , Fluorbenzenos , Inseticidas , Animais , Aedes/efeitos dos fármacos , Masculino , Ciclopropanos/farmacologia , Feminino , Inseticidas/farmacologia , Fertilidade/efeitos dos fármacos , Fluorbenzenos/farmacologia , Controle de Mosquitos
3.
Cell Rep Med ; 4(9): 101175, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37652017

RESUMO

Synapse loss correlates with cognitive decline in Alzheimer's disease (AD). Data from mouse models suggests microglia are important for synapse degeneration, but direct human evidence for any glial involvement in synapse removal in human AD remains to be established. Here we observe astrocytes and microglia from human brains contain greater amounts of synaptic protein in AD compared with non-disease controls, and that proximity to amyloid-ß plaques and the APOE4 risk gene exacerbate this effect. In culture, mouse and human astrocytes and primary mouse and human microglia phagocytose AD patient-derived synapses more than synapses from controls. Inhibiting interactions of MFG-E8 rescues the elevated engulfment of AD synapses by astrocytes and microglia without affecting control synapse uptake. Thus, AD promotes increased synapse ingestion by human glial cells at least in part via an MFG-E8 opsonophagocytic mechanism with potential for targeted therapeutic manipulation.


Assuntos
Doença de Alzheimer , Microglia , Animais , Humanos , Camundongos , Astrócitos , Ingestão de Alimentos , Sinapses
5.
Respir Med Case Rep ; 33: 101465, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34401301

RESUMO

As of February 2020, over 2800 cases of lung injury associated with vapes have been reported in all 50 states (Cullen et al., 2019) [1]. This case is about a 29-year-old female with a five-year history of vaping tetrahydrocannabinol (THC) who presented with symptoms consistent with e-cigarette, or vaping, product-use associated lung injury (EVALI). This case report is unique because this patient clinically improved on a lower dose of corticosteroids compared to other reported cases of EVALI. Additionally, this case report highlights the importance and difficulty of excluding other disease processes prior to treating patients for EVALI, particularly during the coronavirus disease 2019 (COVID-19) global pandemic.

6.
Cell Rep ; 34(12): 108882, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761343

RESUMO

Microglia, brain-resident macrophages, require instruction from the CNS microenvironment to maintain their identity and morphology and regulate inflammatory responses, although what mediates this is unclear. Here, we show that neurons and astrocytes cooperate to promote microglial ramification, induce expression of microglial signature genes ordinarily lost in vitro and in age and disease in vivo, and repress infection- and injury-associated gene sets. The influence of neurons and astrocytes separately on microglia is weak, indicative of synergies between these cell types, which exert their effects via a mechanism involving transforming growth factor ß2 (TGF-ß2) signaling. Neurons and astrocytes also combine to provide immunomodulatory cues, repressing primed microglial responses to weak inflammatory stimuli (without affecting maximal responses) and consequently limiting the feedback effects of inflammation on the neurons and astrocytes themselves. These findings explain why microglia isolated ex vivo undergo de-differentiation and inflammatory deregulation and point to how disease- and age-associated changes may be counteracted.


Assuntos
Astrócitos/patologia , Inflamação/patologia , Microglia/patologia , Neurônios/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Inflamação/genética , Interferons/genética , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Família Multigênica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fagocitose/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Fator de Crescimento Transformador beta/metabolismo
7.
Redox Biol ; 47: 102158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626892

RESUMO

The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy.


Assuntos
Astrócitos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes , Astrócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
8.
Respir Med ; 178: 106331, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33592573

RESUMO

BACKGROUND: Sarcoidosis is a multisystem granulomatous disorder with unclear etiology. Morbidity and mortality vary based on organ involvement, with cardiac sarcoidosis (CS) associated with higher mortality; despite this, CS remains underdiagnosed. The Heart Rhythm Society (HRS) expert consensus statement recommends screening sarcoidosis patients for CS utilizing a symptom screen, EKG, and echocardiogram (TTE), while the American Thoracic Society (ATS) guideline recommends only EKG and symptom screening. These recommendations, however, are based on limited data with recommendations for further studies. RESEARCH QUESTION: The purpose is to evaluate the prevalence of abnormal screening tests in patients with sarcoidosis and the correlation of these tests with the subsequent diagnosis of CS. A specific emphasis was placed on evaluating the sensitivity of the recommendations versus the sensitivity of a modified criteria. STUDY DESIGN: and Methods: This study retrospectively evaluated a database of prospectively enrolled patients from a tertiary military academic center. All patients who underwent imaging with cardiac MRI and/or FDG-PET were identified. These results were correlated with screening studies (symptom screen, EKG, TTE, and ambulatory rhythm monitoring (ARM)) and used to calculate sensitivity, specificity, and positive and negative predictive values for each test. Using a clinical diagnosis of CS as the reference standard, the sensitivity and specificity of the HRS criteria were calculated and compared to a modified screening rubric developed a priori, consisting of minor changes to the criteria and the addition of ARM. RESULTS: This study evaluated 114 patients with sarcoidosis with 132 advanced imaging events, leading to a diagnosis of CS in 36 patients. Utilizing HRS screening recommendations, the sensitivity for CS was 63.9%, while the modified criteria increased sensitivity to 94.4%. INTERPRETATION: This study suggests that the HRS guidelines lack sensitivity to effectively screen for CS and that a modified screening model which includes ARM may be more effective.


Assuntos
Cardiomiopatias/diagnóstico , Eletrocardiografia Ambulatorial/métodos , Programas de Rastreamento/métodos , Sarcoidose/diagnóstico , Cardiomiopatias/diagnóstico por imagem , Ecocardiografia Transesofagiana , Feminino , Frequência Cardíaca , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Valor Preditivo dos Testes , Estudos Retrospectivos , Sarcoidose/diagnóstico por imagem , Sensibilidade e Especificidade
9.
Prehosp Disaster Med ; 25(5): 464-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21053197

RESUMO

A terrorist attack on US schools no longer can be considered a Black Swan event. Mounting evidence suggests that extremist organizations actively are targeting US schools. Equally disturbing are data suggesting that schools, universities, and communities are unprepared for large-scale violence. The Operational Medicine Institute Conference on an Integrated Response to the Modern Urban Terrorist Threat revealed significant variations in the perceived threats and critical response gaps among emergency medical providers, law enforcement personnel, politicians, and security specialists. The participants recommended several steps to address these gaps in preparedness, training, responses, and recovery.


Assuntos
Instituições Acadêmicas , Integração de Sistemas , Violência , Planejamento em Desastres/organização & administração , Humanos , Estados Unidos
10.
J Thorac Dis ; 12(10): 5916-5924, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209424

RESUMO

BACKGROUND: Lung cancer remains the leading cause of cancer deaths in the United States, and lung cancer screening has been shown to decrease this mortality. Adherence to lung cancer screening is paramount to realize the mortality benefit, and reported adherence rates vary widely. Few reports address non-adherence to screening, and our study sought to understand the non-compliant patients in our military population. METHODS: This Institutional Review Board approved retrospective review of patients enrolled in our screening program from 2013-2019 identified patients who failed to obtain a subsequent Low Dose CT scan (LDCT) within 15 months of their prior scan. Attempts were made to contact these patients and elucidate motivations for non-adherence via telephone. RESULTS: Of the 242 patients enrolled, 183 (76%) patients were adherent to the protocol. Significant predictors of non-adherence versus adherence were younger age (P=0.008), female sex (P=0.005), and enlisted officer rank (P=0.03). There was no difference with regards to race, smoking status, pack-years, negative screens, lung-RADS level, or nodule size. 31 (52%) non-adherent patients were contacted, and 24 (77%) reported their reason for non-adherence was lack of follow-up for a LDCT. Twenty (64%) were interested in re-enrollment. Of the total screening cohort, 15 interventions were performed, with lung cancer identified in 5 (2%)-a 67% false positive rate. One stage IV lung cancer was found in a non-adherent patient who re-enrolled. CONCLUSIONS: Lack of perceived contact for follow-up was expressed as the primary reason for non-compliance in our screening program. Compliance is critical to the efficacy of any screening modality, and adherence rates to lung cancer screening may be increased through improved contact with patients via multiple avenues (i.e., phone, email, and letter). There is benefit in contacting non-adherent patients as high rates of re-enrollment are possible.

11.
Cell Rep ; 25(4): 841-851.e4, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30355491

RESUMO

The GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse. However, these models remain untested in the context of endogenous NMDARs. We show that, although mutating the endogenous GluN2B CaMKII site has secondary effects on GluN2B CTD phosphorylation, the developmental changes in NMDAR composition occur normally and measures of plasticity and synaptogenesis are unaffected. Moreover, the switch proceeds normally in mice that have the GluN2A CTD replaced by that of GluN2B and commences without an observable decline in GluN2B levels but is impaired by GluN2A haploinsufficiency. Thus, GluN2A expression levels, and not GluN2 subtype-specific CTD-driven events, are the overriding factor in the developmental switch in NMDAR composition.


Assuntos
Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Mutação/genética , Neurogênese , Fosforilação , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/metabolismo , Ritmo Teta/fisiologia
13.
Elife ; 62017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28731405

RESUMO

Aberrant NMDA receptor (NMDAR) activity contributes to several neurological disorders, but direct antagonism is poorly tolerated therapeutically. The GluN2B cytoplasmic C-terminal domain (CTD) represents an alternative therapeutic target since it potentiates excitotoxic signaling. The key GluN2B CTD-centred event in excitotoxicity is proposed to involve its phosphorylation at Ser-1303 by Dapk1, that is blocked by a neuroprotective cell-permeable peptide mimetic of the region. Contrary to this model, we find that excitotoxicity can proceed without increased Ser-1303 phosphorylation, and is unaffected by Dapk1 deficiency in vitro or following ischemia in vivo. Pharmacological analysis of the aforementioned neuroprotective peptide revealed that it acts in a sequence-independent manner as an open-channel NMDAR antagonist at or near the Mg2+ site, due to its high net positive charge. Thus, GluN2B-driven excitotoxic signaling can proceed independently of Dapk1 or altered Ser-1303 phosphorylation.


Assuntos
Proteínas Quinases Associadas com Morte Celular/fisiologia , Neurônios/patologia , Neuropeptídeos/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Morte Celular , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação , Subunidades Proteicas , Serina/química , Serina/metabolismo , Transdução de Sinais
14.
Nat Commun ; 8: 15132, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28462931

RESUMO

The influence that neurons exert on astrocytic function is poorly understood. To investigate this, we first developed a system combining cortical neurons and astrocytes from closely related species, followed by RNA-seq and in silico species separation. This approach uncovers a wide programme of neuron-induced astrocytic gene expression, involving Notch signalling, which drives and maintains astrocytic maturity and neurotransmitter uptake function, is conserved in human development, and is disrupted by neurodegeneration. Separately, hundreds of astrocytic genes are acutely regulated by synaptic activity via mechanisms involving cAMP/PKA-dependent CREB activation. This includes the coordinated activity-dependent upregulation of major astrocytic components of the astrocyte-neuron lactate shuttle, leading to a CREB-dependent increase in astrocytic glucose metabolism and elevated lactate export. Moreover, the groups of astrocytic genes induced by neurons or neuronal activity both show age-dependent decline in humans. Thus, neurons and neuronal activity regulate the astrocytic transcriptome with the potential to shape astrocyte-neuron metabolic cooperation.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Tauopatias/genética , Animais , Astrócitos/citologia , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Comunicação Celular , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Técnicas de Cocultura , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Perfilação da Expressão Gênica , Glucose/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ácido Láctico/metabolismo , Potenciais da Membrana/fisiologia , Camundongos Knockout , Neurônios/citologia , Ratos Sprague-Dawley , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Tauopatias/metabolismo , Tauopatias/patologia
16.
Nat Commun ; 6: 7066, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25967870

RESUMO

Forebrain neurons have weak intrinsic antioxidant defences compared with astrocytes, but the molecular basis and purpose of this is poorly understood. We show that early in mouse cortical neuronal development in vitro and in vivo, expression of the master-regulator of antioxidant genes, transcription factor NF-E2-related-factor-2 (Nrf2), is repressed by epigenetic inactivation of its promoter. Consequently, in contrast to astrocytes or young neurons, maturing neurons possess negligible Nrf2-dependent antioxidant defences, and exhibit no transcriptional responses to Nrf2 activators, or to ablation of Nrf2's inhibitor Keap1. Neuronal Nrf2 inactivation seems to be required for proper development: in maturing neurons, ectopic Nrf2 expression inhibits neurite outgrowth and aborization, and electrophysiological maturation, including synaptogenesis. These defects arise because Nrf2 activity buffers neuronal redox status, inhibiting maturation processes dependent on redox-sensitive JNK and Wnt pathways. Thus, developmental epigenetic Nrf2 repression weakens neuronal antioxidant defences but is necessary to create an environment that supports neuronal development.


Assuntos
Antioxidantes/metabolismo , Córtex Cerebral/citologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Córtex Cerebral/embriologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Fenômenos Eletrofisiológicos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
17.
J Spec Oper Med ; 14(3): 135-139, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27689371

RESUMO

The Johns Hopkins Center for Law Enforcement Medicine and Division of Special Operations in Baltimore generously hosted the June 2014 Committee for Tactical Emergency Casualty Care meeting (C-TECC). The C-TECC meeting focused on several critical issues including guideline updates, review of C-TECC member involvement in recent federal efforts regarding active violent incidents, examination of national best practices, and new partnership agreements.

18.
Neuropharmacology ; 74: 119-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23402996

RESUMO

MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to 'pre-block' a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg(2+) is also present. In the presence of Mg(2+), 50% recovery from MK-801 blockade is achieved after 10' of 100 µM NMDA, or 30' of 15 µM NMDA exposure. In Mg(2+)-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg(2+) in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg(2+) or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 µM NMDA in the presence of Mg(2+) for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 'pre-block' protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.


Assuntos
Maleato de Dizocilpina/farmacologia , Magnésio/farmacologia , Memantina/farmacologia , Potenciais da Membrana/efeitos dos fármacos , N-Metilaspartato/agonistas , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Cátions/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/fisiologia , N-Metilaspartato/farmacologia , Degeneração Neural/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA