Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 64(4): 704-719, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27871366

RESUMO

The cytotoxicity of DNA-protein crosslinks (DPCs) is largely ascribed to their ability to block the progression of DNA replication. DPCs frequently occur in cells, either as a consequence of metabolism or exogenous agents, but the mechanism of DPC repair is not completely understood. Here, we characterize SPRTN as a specialized DNA-dependent and DNA replication-coupled metalloprotease for DPC repair. SPRTN cleaves various DNA binding substrates during S-phase progression and thus protects proliferative cells from DPC toxicity. Ruijs-Aalfs syndrome (RJALS) patient cells with monogenic and biallelic mutations in SPRTN are hypersensitive to DPC-inducing agents due to a defect in DNA replication fork progression and the inability to eliminate DPCs. We propose that SPRTN protease represents a specialized DNA replication-coupled DPC repair pathway essential for DNA replication progression and genome stability. Defective SPRTN-dependent clearance of DPCs is the molecular mechanism underlying RJALS, and DPCs are contributing to accelerated aging and cancer.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/química , Instabilidade Genômica , Sequência de Aminoácidos , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Etoposídeo/química , Formaldeído/química , Expressão Gênica , Humanos , Cinética , Mutação , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Síndrome , Raios Ultravioleta
2.
Cell Death Discov ; 6: 110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133645

RESUMO

Platinum chemotherapies are highly effective cytotoxic agents but often induce resistance when used as monotherapies. Combinatorial strategies limit this risk and provide effective treatment options for many cancers. Here, we repurpose atovaquone (ATQ), a well-tolerated & FDA-approved anti-malarial agent by demonstrating that it potentiates cancer cell death of a subset of platinums. We show that ATQ in combination with carboplatin or cisplatin induces striking and repeatable concentration- and time-dependent cell death sensitization in vitro across a variety of cancer cell lines. ATQ induces mitochondrial reactive oxygen species (mROS), depleting intracellular glutathione (GSH) pools in a concentration-dependent manner. The superoxide dismutase mimetic MnTBAP rescues ATQ-induced mROS production and pre-loading cells with the GSH prodrug N-acetyl cysteine (NAC) abrogates the sensitization. Together, these findings implicate ATQ-induced oxidative stress as key mediator of the sensitizing effect. At physiologically achievable concentrations, ATQ and carboplatin furthermore synergistically delay the growth of three-dimensional avascular spheroids. Clinically, ATQ is a safe and specific inhibitor of the electron transport chain (ETC) and is concurrently being repurposed as a candidate tumor hypoxia modifier. Together, these findings suggest that ATQ is deserving of further study as a candidate platinum sensitizing agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA