Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
PLoS Biol ; 13(4): e1002130, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25875845

RESUMO

Assessment of the ecological and economic/societal impacts of the introduction of non-indigenous species (NIS) is one of the primary focus areas of bioinvasion science in terrestrial and aquatic environments, and is considered essential to management. A classification system of NIS, based on the magnitude of their environmental impacts, was recently proposed to assist management. Here, we consider the potential application of this classification scheme to the marine environment, and offer a complementary framework focussing on value sets in order to explicitly address marine management concerns. Since existing data on marine NIS impacts are scarce and successful marine removals are rare, we propose that management of marine NIS adopt a precautionary approach, which not only would emphasise preventing new incursions through pre-border and at-border controls but also should influence the categorisation of impacts. The study of marine invasion impacts requires urgent attention and significant investment, since we lack the luxury of waiting for the knowledge base to be acquired before the window of opportunity closes for feasible management.


Assuntos
Meio Ambiente , Espécies Introduzidas , Biologia Marinha , Animais
2.
Science ; 376(6598): 1215-1219, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679394

RESUMO

Early naturalists suggested that predation intensity increases toward the tropics, affecting fundamental ecological and evolutionary processes by latitude, but empirical support is still limited. Several studies have measured consumption rates across latitude at large scales, with variable results. Moreover, how predation affects prey community composition at such geographic scales remains unknown. Using standardized experiments that spanned 115° of latitude, at 36 nearshore sites along both coasts of the Americas, we found that marine predators have both higher consumption rates and consistently stronger impacts on biomass and species composition of marine invertebrate communities in warmer tropical waters, likely owing to fish predators. Our results provide robust support for a temperature-dependent gradient in interaction strength and have potential implications for how marine ecosystems will respond to ocean warming.


Assuntos
Organismos Aquáticos , Biomassa , Peixes , Temperatura Alta , Invertebrados , Comportamento Predatório , Animais , Aquecimento Global , Oceanos e Mares
3.
Harmful Algae ; 102: 101852, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33875179

RESUMO

Spatial and temporal trends of marine harmful algal events in Canada over the last three decades were examined using data from the Harmful Algal Event Database (HAEDAT). This database contains the most complete record of algal blooms, phycotoxins and shellfish harvesting area closures in Canada since 1987. This 30-year review of 593 Canadian HAEDAT records from 1988 to 2017, together with other Canadian data and publications, shows that recurring harmful algal events have been widespread throughout both the Atlantic and Pacific coastal regions. The 367 paralytic shellfish toxin (PST) reports revealed annual and frequent recurrence throughout both the Atlantic and Pacific regions, including multi-year PST events in the Bay of Fundy, the Estuary and Gulf of St. Lawrence and the Strait of Georgia. The 70 amnesic shellfish toxin (AST) records revealed no recognizable trend, as these events were usually area specific and did not recur annually. The increasing frequency of diarrhetic shellfish toxin (DST) events over the period of this review, in total 59 records, can be at least partially explained by increased sampling effort. Marine species mortalities caused by harmful algae (including diatoms, dictyochophytes, dinoflagellates, and raphidophytes), were a common occurrence in the Pacific region (87 reports), but have been reported much less frequently in the Atlantic region (10 reports). Notable Canadian records contained in HAEDAT include the first detection worldwide of amnesic shellfish poisoning (ASP), attributed to the production of domoic acid (an AST) by a diatom (Pseudo-nitzschia multiseries) in Prince Edward Island in 1987. The first proven case of diarrhetic shellfish poisoning (DSP) in Canada and North America was recorded in 1990, and the first closures of shellfish harvesting due to DST (associated with the presence of Dinophysis norvegica) occurred in Nova Scotia in 1992, followed by closures in Newfoundland and Labrador in 1993. In 2008, mass mortalities of fishes, birds and mammals in the St. Lawrence Estuary were caused by Alexandrium catenella and high levels of PST. During 2015, the Pacific coast experienced a large algal bloom that extended from California to Alaska. It resulted in the closure of several shellfish harvesting areas in British Columbia due to AST, produced by Pseudo-nitzschia australis. Data from the Canadian Arctic coast is not included in HAEDAT. However, because of the emerging importance of climate change and increased vessel traffic in the Arctic, information on the occurrence of harmful algal species (pelagic and sympagic = sea ice-associated) in that region was compiled from relevant literature and data. The results suggest that these taxa may be more widespread than previously thought in the Canadian Arctic. Information in HAEDAT was not always robust or complete enough to provide conclusions about temporal trends. Compilation of spatial and temporal information from HAEDAT and other records is nevertheless important for evaluating the potential role of harmful algae as a stressor on Canadian marine ecosystems, and will support the next step: developing a knowledge gap analysis that will establish research priorities for determining their consequences on human and ecosystem health.


Assuntos
Ecossistema , Fitoplâncton , Alaska , Regiões Árticas , Colúmbia Britânica , Humanos , América do Norte , Nova Escócia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37359131

RESUMO

Global trends in the occurrence, toxicity and risk posed by harmful algal blooms to natural systems, human health and coastal economies are poorly constrained, but are widely thought to be increasing due to climate change and nutrient pollution. Here, we conduct a statistical analysis on a global dataset extracted from the Harmful Algae Event Database and Ocean Biodiversity Information System for the period 1985-2018 to investigate temporal trends in the frequency and distribution of marine harmful algal blooms. We find no uniform global trend in the number of harmful algal events and their distribution over time, once data were adjusted for regional variations in monitoring effort. Varying and contrasting regional trends were driven by differences in bloom species, type and emergent impacts. Our findings suggest that intensified monitoring efforts associated with increased aquaculture production are responsible for the perceived increase in harmful algae events and that there is no empirical support for broad statements regarding increasing global trends. Instead, trends need to be considered regionally and at the species level.

5.
PeerJ ; 8: e8444, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095331

RESUMO

Marine species invasions pose a global threat to native biodiversity and commercial fisheries. The European green crab (Carcinus maenas) is one of the most successful marine invaders worldwide and has, in the last decade, invaded the southern and western coastal waters of the island of Newfoundland, Newfoundland and Labrador (NL), Canada. Impacts of green crab on the American lobster (Homarus americanus), which are native to Newfoundland, are not well understood, particularly for interactions around deployed fishing gear. Declines in lobster catch rates in invaded systems (i.e., Placentia Bay, NL), have prompted concerns among lobster fishers that green crab are interfering with lobster catch. Here, we conducted a field experiment in a recently-invaded bay (2013) in which we deployed lobster traps pre-stocked with green crab, native rock crab (Cancer irroratus) (a procedural control), or empty (control). We compared catch per unit effort across each category, and used underwater cameras to directly observe trap performance in situ. In addition, we used SCUBA surveys to determine the correlation between ambient density of lobster and green crab in the ecosystem and the catch processes of lobster in traps. We found: (1) Regardless of the species of crab stocked, crab presence reduced the total number of lobster that attempted to enter the trap, and also reduced entry success rate, (2) lobster consumed green crab, rock crab and other lobster inside traps and (3) there was a positive association between lobster catch and ambient lobster density. Our results suggest that while there was a relationship between in-trap crab density and trap catch rates, it was not linked to the non-native/native status of the crab species.

6.
Divers Distrib ; 26(12): 1780-1797, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36960319

RESUMO

Aim: The introduction of aquatic non-indigenous species (ANS) has become a major driver for global changes in species biogeography. We examined spatial patterns and temporal trends of ANS detections since 1965 to inform conservation policy and management. Location: Global. Methods: We assembled an extensive dataset of first records of detection of ANS (1965-2015) across 49 aquatic ecosystems, including the (a) year of first collection, (b) population status and (c) potential pathway(s) of introduction. Data were analysed at global and regional levels to assess patterns of detection rate, richness and transport pathways. Results: An annual mean of 43 (±16 SD) primary detections of ANS occurred-one new detection every 8.4 days for 50 years. The global rate of detections was relatively stable during 1965-1995, but increased rapidly after this time, peaking at roughly 66 primary detections per year during 2005-2010 and then declining marginally. Detection rates were variable within and across regions through time. Arthropods, molluscs and fishes were the most frequently reported ANS. Most ANS were likely introduced as stowaways in ships' ballast water or biofouling, although direct evidence is typically absent. Main conclusions: This synthesis highlights the magnitude of recent ANS detections, yet almost certainly represents an underestimate as many ANS go unreported due to limited search effort and diminishing taxonomic expertise. Temporal rates of detection are also confounded by reporting lags, likely contributing to the lower detection rate observed in recent years. There is a critical need to implement standardized, repeated methods across regions and taxa to improve the quality of global-scale comparisons and sustain core measures over longer time-scales. It will be fundamental to fill in knowledge gaps given that invasion data representing broad regions of the world's oceans are not yet readily available and to maintain knowledge pipelines for adaptive management.

7.
PeerJ ; 7: e6308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30713818

RESUMO

The European green crab (Carcinus maenas) is a crustacean species native to European and North African coastlines that has become one of the world's most successful marine invasive species. Targeted fishing programs aimed at removing green crabs from invaded ecosystems commonly use Fukui multi-species marine traps. Improving the efficiency of these traps would improve the ability to respond to green crab invasions. In this study, we developed four distinct trap modifications that were designed to facilitate the successful capture of green crabs, with the goal of improving the performance of the Fukui trap. We tested these modifications in situ during the summer of 2016 at two locations in Placentia Bay, Newfoundland. We discovered that three of our modified Fukui trap designs caught significantly more green crabs than the standard Fukui trap, increasing catch-per-unit-effort (CPUE) by as much as 81%. We conclude that our top-performing modifications have great potential for widespread use with existing Fukui traps that are being used for green crab removal efforts.

8.
PeerJ ; 6: e4223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29340237

RESUMO

The European green crab (Carcinus maenas) is a destructive marine invader that was first discovered in Newfoundland waters in 2007 and has since become established in nearshore ecosystems on the south and west coast of the island. Targeted fishing programs aimed at removing green crabs from invaded Newfoundland ecosystems use Fukui traps, but the capture efficiency of these traps has not been previously assessed. We assessed Fukui traps using in situ observation with underwater video cameras as they actively fished for green crabs. From these videos, we recorded the number of green crabs that approached the trap, the outcome of each entry attempt (success or failure), and the number of exits from the trap. Across eight videos, we observed 1,226 green crab entry attempts, with only a 16% rate of success from these attempts. Based on these observations we believe there is scope to improve the performance of the Fukui trap through modifications in order to achieve a higher catch per unit effort (CPUE), maximizing trap usage for mitigation. Ultimately, a more efficient Fukui trap will help to control green crab populations in order to preserve the function and integrity of ecosystems invaded by the green crab.

9.
Evol Appl ; 11(6): 869-882, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29928296

RESUMO

Genetic-environment associations are increasingly revealed through population genomic data and can occur through a number of processes, including secondary contact, divergent natural selection, or isolation by distance. Here, we investigate the influence of the environment, including seasonal temperature and salinity, on the population structure of the invasive European green crab (Carcinus maenas) in eastern North America. Green crab populations in eastern North America are associated with two independent invasions, previously shown to consist of distinct northern and southern ecotypes, with a contact zone in southern Nova Scotia, Canada. Using a RAD-seq panel of 9,137 genomewide SNPs, we detected 41 SNPs (0.49%) whose allele frequencies were highly correlated with environmental data. A principal components analysis of 25 environmental variables differentiated populations into northern, southern, and admixed sites in concordance with the observed genomic spatial structure. Furthermore, a spatial principal components analysis conducted on genomic and geographic data revealed a high degree of global structure (p < .0001) partitioning a northern and southern ecotype. Redundancy and partial redundancy analyses revealed that among the environmental variables tested, winter sea surface temperature had the strongest association with spatial structuring, suggesting that it is an important factor defining range and expansion limits of each ecotype. Understanding environmental thresholds associated with intraspecific diversity will facilitate the ability to manage current and predict future distributions of this aquatic invasive species.

10.
Evol Appl ; 11(9): 1656-1670, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344634

RESUMO

Two genetically distinct lineages of European green crabs (Carcinus maenas) were independently introduced to eastern North America, the first in the early 19th century and the second in the late 20th century. These lineages first came into secondary contact in southeastern Nova Scotia, Canada (NS), where they hybridized, producing latitudinal genetic clines. Previous studies have documented a persistent southward shift in the clines of different marker types, consistent with existing dispersal and recruitment pathways. We evaluated current clinal structure by quantifying the distribution of lineages and fine-scale hybridization patterns across the eastern North American range (25 locations, ~39 to 49°N) using informative single nucleotide polymorphisms (SNPs; n = 96). In addition, temporal changes in the genetic clines were evaluated using mitochondrial DNA and microsatellite loci (n = 9-11) over a 15-year period (2000-2015). Clinal structure was consistent with prior work demonstrating the existence of both northern and southern lineages with a hybrid zone occurring between southern New Brunswick (NB) and southern NS. Extensive later generation hybrids were detected in this region and in southeastern Newfoundland. Temporal genetic analysis confirmed the southward progression of clines over time; however, the rate of this progression was slower than predicted by forecasting models, and current clines for all marker types deviated significantly from these predictions. Our results suggest that neutral and selective processes contribute to cline dynamics, and ultimately, highlight how selection, hybridization, and dispersal can collectively influence invasion success.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA