Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 98(3): 840-850, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28027588

RESUMO

The last decade has seen a dramatic increase in the use of species distribution models (SDMs) to characterize patterns of species' occurrence and abundance. Efforts to parameterize SDMs often create a tension between the quality and quantity of data available to fit models. Estimation methods that integrate both standardized and non-standardized data types offer a potential solution to the tradeoff between data quality and quantity. Recently several authors have developed approaches for jointly modeling two sources of data (one of high quality and one of lesser quality). We extend their work by allowing for explicit spatial autocorrelation in occurrence and detection error using a Multivariate Conditional Autoregressive (MVCAR) model and develop three models that share information in a less direct manner resulting in more robust performance when the auxiliary data is of lesser quality. We describe these three new approaches ("Shared," "Correlation," "Covariates") for combining data sources and show their use in a case study of the Brown-headed Nuthatch in the Southeastern U.S. and through simulations. All three of the approaches which used the second data source improved out-of-sample predictions relative to a single data source ("Single"). When information in the second data source is of high quality, the Shared model performs the best, but the Correlation and Covariates model also perform well. When the information quality in the second data source is of lesser quality, the Correlation and Covariates model performed better suggesting they are robust alternatives when little is known about auxiliary data collected opportunistically or through citizen scientists. Methods that allow for both data types to be used will maximize the useful information available for estimating species distributions.


Assuntos
Modelos Teóricos , Análise Espacial , Ecologia , Armazenamento e Recuperação da Informação
2.
Ecol Appl ; 25(1): 160-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26255365

RESUMO

Land-use change is a major cause of wildlife habitat loss. Understanding how changes in land-use policies and economic factors can impact future trends in land use and wildlife habitat loss is therefore critical for conservation efforts. Our goal here was to evaluate the consequences of future land-use changes under different conservation policies and crop market conditions on habitat loss for wildlife species in the southeastern United States. We predicted the rates of habitat loss for 336 terrestrial vertebrate species by 2051. We focused on habitat loss due to the expansion of urban, crop, and pasture. Future land-use changes following business-as-usual conditions resulted in relatively low rates of wildlife habitat loss across the entire Southeast, but some ecoregions and species groups experienced much higher habitat loss than others. Increased crop commodity prices exacerbated wildlife habitat loss in most ecoregions, while the implementation of conservation policies (reduced urban sprawl, and payments for land conservation) reduced the projected habitat loss in some regions, to a certain degree. Overall, urban and crop expansion were the main drivers of habitat loss. Reptiles and wildlife species associated with open vegetation (grasslands, open woodlands) were the species groups most vulnerable to future land-use change. Effective conservation of wildlife habitat in the Southeast should give special consideration to future land-use changes, regional variations, and the forces that could shape land-use decisions.


Assuntos
Animais Selvagens , Ecossistema , Vertebrados/fisiologia , Agroquímicos , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Atividades Humanas , Modelos Teóricos , Sudeste dos Estados Unidos , Fatores de Tempo , Urbanização
3.
J Environ Manage ; 151: 186-99, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25576696

RESUMO

Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the face of these drivers. Our results show that while climatic warming had little effect on the wildfire regime, and thus on longleaf pine dynamics, urban growth led to an 8% reduction in annual wildfire area. The management scenarios we tested increase the ecosystem's total extent by up to 62% and result in expansion of open-canopy longleaf by as much as 216%, meeting one of the two conservation goals for the ecosystem. We find that both conservation goals for this ecosystem, which is climate-resilient but vulnerable to urbanization, are only attainable if a greater focus is placed on restoration of non-longleaf areas as opposed to maintaining existing longleaf stands. Our approach demonstrates the importance of accounting for multiple relevant anthropogenic threats in an ecosystem-specific context in order to facilitate more effective management actions.


Assuntos
Mudança Climática , Ecossistema , Incêndios , Pinus/fisiologia , Urbanização , Modelos Biológicos , Sudeste dos Estados Unidos
4.
PLoS One ; 17(4): e0267113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35486607

RESUMO

Management actions intended to benefit fish in large rivers can directly or indirectly affect multiple ecosystem components. Without consideration of the effects of management on non-target ecosystem components, unintended consequences may limit management efficacy. Monitoring can help clarify the effects of management actions, including on non-target ecosystem components, but only if data are collected to characterize key ecosystem processes that could affect the outcome. Scientists from across the U.S. convened to develop a conceptual model that would help identify monitoring information needed to better understand how natural and anthropogenic factors affect large river fishes. We applied the conceptual model to case studies in four large U.S. rivers. The application of the conceptual model indicates the model is flexible and relevant to large rivers in different geographic settings and with different management challenges. By visualizing how natural and anthropogenic drivers directly or indirectly affect cascading ecosystem tiers, our model identified critical information gaps and uncertainties that, if resolved, could inform how to best meet management objectives. Despite large differences in the physical and ecological contexts of the river systems, the case studies also demonstrated substantial commonalities in the data needed to better understand how stressors affect fish in these systems. For example, in most systems information on river discharge and water temperature were needed and available. Conversely, information regarding trophic relationships and the habitat requirements of larval fishes were generally lacking. This result suggests that there is a need to better understand a set of common factors across large-river systems. We provide a stepwise procedure to facilitate the application of our conceptual model to other river systems and management goals.


Assuntos
Ecossistema , Rios , Animais , Conservação dos Recursos Naturais/métodos , Peixes , Modelos Teóricos
5.
PLoS One ; 9(7): e102261, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054329

RESUMO

The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.


Assuntos
Cidades , Ecossistema , Modelos Teóricos , Urbanização/tendências , Conservação dos Recursos Naturais/métodos , Previsões , Geografia , Humanos , Densidade Demográfica , Sudeste dos Estados Unidos
6.
PLoS One ; 8(1): e54689, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23372754

RESUMO

If conservation of biodiversity is the goal, then the protected areas network of the continental US may be one of our best conservation tools for safeguarding ecological systems (i.e., vegetation communities). We evaluated representation of ecological systems in the current protected areas network and found insufficient representation at three vegetation community levels within lower elevations and moderate to high productivity soils. We used national-level data for ecological systems and a protected areas database to explore alternative ways we might be able to increase representation of ecological systems within the continental US. By following one or more of these alternatives it may be possible to increase the representation of ecological systems in the protected areas network both quantitatively (from 10% up to 39%) and geographically and come closer to meeting the suggested Convention on Biological Diversity target of 17% for terrestrial areas. We used the Landscape Conservation Cooperative framework for regional analysis and found that increased conservation on some private and public lands may be important to the conservation of ecological systems in Western US, while increased public-private partnerships may be important in the conservation of ecological systems in Eastern US. We have not assessed the pros and cons of following the national or regional alternatives, but rather present them as possibilities that may be considered and evaluated as decisions are made to increase the representation of ecological systems in the protected areas network across their range of ecological, geographical, and geophysical occurrence in the continental US into the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Meio Ambiente , Geografia , Humanos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA