Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(17): 9356-9368, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37486777

RESUMO

RIG-I (retinoic acid inducible gene-I) can sense subtle differences between endogenous and viral RNA in the cytoplasm, triggering an anti-viral immune response through induction of type I interferons (IFN) and other inflammatory mediators. Multiple crystal and cryo-EM structures of RIG-I suggested a mechanism in which the C-terminal domain (CTD) is responsible for the recognition of viral RNA with a 5'-triphoshate modification, while the CARD domains serve as a trigger for downstream signaling, leading to the induction of type I IFN. However, to date contradicting conclusions have been reached around the role of ATP in the mechanism of the CARD domains ejection from RIG-I's autoinhibited state. Here we present an application of NMR spectroscopy to investigate changes induced by the binding of 5'-triphosphate and 5'-OH dsRNA, both in the presence and absence of nucleotides, to full length RIG-I with all its methionine residues selectively labeled (Met-[ϵ-13CH3]). With this approach we were able to identify residues on the CTD, helicase domain, and CARDs that served as probes to sense RNA-induced conformational changes in those respective regions. Our results were analyzed in the context of either agonistic or antagonistic RNAs, by and large supporting a mechanism proposed by the Pyle Lab in which CARD release is primarily dependent on the RNA binding event.


Assuntos
Transativadores , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Interferon Tipo I/genética , Estrutura Terciária de Proteína , RNA de Cadeia Dupla , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais , Transativadores/metabolismo
2.
Anal Chem ; 96(3): 1138-1146, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165811

RESUMO

Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.


Assuntos
Desenvolvimento de Medicamentos , Acústica , Espectrometria de Massas/métodos , Peptídeos , Fluxo de Trabalho
3.
Pituitary ; 27(1): 61-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37976013

RESUMO

BACKGROUND: A proportion of patients with adrenal insufficiency (AI) require increases in their maintenance glucocorticoids following the Covid-19 vaccine as a result of vaccine-related symptoms or development of incipient or frank adrenal crisis. In a large cohort of AI patients, we aim to characterise symptoms, changes in glucocorticoid dosage, occurrence of adrenal crises and whether there are differences between the mRNA and adenovirus vector vaccines. PATIENTS AND METHODS: Patients with AI of any aetiology were invited to complete a short, structured questionnaire of their experience of the Covid-19 vaccination. RESULTS: 279 of the 290 patients enrolled to this study fully completed the questionnaires. 176, 100 and 3 received the Astra Zeneca (AZ), Pfizer-BioNTech (PB) and Moderna (MD) as initial vaccine respectively; and for the second vaccine, 170, 99 and 10 received AZ, PB and MD respectively. Moderate to severe symptoms occurred in 44.8 and 39.7% after the first and second vaccines respectively, were of early onset (6.0 h, IQR 2-12 &. 6.0 h, IQR 2-24 h) and short duration (24 h, IQR 12-72 h & 26 h, IQR 12-72 h). 34.4 and 29.7% increased their maintenance glucocorticoid dose. DISCUSSION: The Covid-19 vaccines appear well-tolerated in patients with AI, with similar frequency of symptoms to that reported in the background population. The AZ vaccine leads to slightly greater post-vaccination symptom burden and need to increase glucocorticoid dosage, but this does not translate to greater adverse outcomes.


Assuntos
Insuficiência Adrenal , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Glucocorticoides/uso terapêutico , COVID-19/prevenção & controle , Esteroides
4.
Clin Endocrinol (Oxf) ; 99(5): 470-473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358373

RESUMO

BACKGROUND: Patients with adrenal insufficiency (AI) have excess mortality, in part due to the occurrence of life-threatening adrenal crises. Infective processes, including that of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are recognised as the major precipitant of adrenal crises. Adverse reactions to the ChAdOx1 SARS-CoV-2 vaccine occur in a significant proportion of individuals, however, are mild-moderate in the majority of cases. DESIGN: Case series. PATIENTS & RESULTS: We describe five cases where more severe adverse reactions to the ChAdOx1 SARS-CoV-2 vaccine led to actual or incipient adrenal crises requiring parenteral hydrocortisone within 24 h of receiving the first ChAdOx1 SARS-CoV-2 vaccination. CONCLUSION: In individuals with adrenal insufficiency, adverse reactions to the initial dose of the ChAdOx1 SARS-CoV-2 vaccination can precipitate adrenal crises. We recommend that patients with AI should immediately increase their maintenance glucocorticoid dosage 2-3 fold on experiencing any symptoms in the initial 24 h following vaccination.


Assuntos
Insuficiência Adrenal , Vacinas contra COVID-19 , COVID-19 , Humanos , Doença Aguda , Insuficiência Adrenal/etiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinação/efeitos adversos
5.
Bioorg Med Chem Lett ; 84: 129193, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822300

RESUMO

Inhibiting Arginase 1 (ARG1), a metalloenzyme that hydrolyzes l-arginine in the urea cycle, has been demonstrated as a promising therapeutic avenue in immuno-oncology through the restoration of suppressed immune response in several types of cancers. Most of the currently reported small molecule inhibitors are boronic acid based. Herein, we report the discovery of non-boronic acid ARG1 inhibitors through virtual screening. Biophysical and biochemical methods were used to experimentally profile the hits while X-ray crystallography confirmed a class of trisubstituted pyrrolidine derivatives as optimizable alternatives for the development of novel classes of immuno-oncology agents targeting this enzyme.


Assuntos
Arginase , Neoplasias , Humanos , Modelos Moleculares , Arginase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Arginina/química
6.
Am J Physiol Endocrinol Metab ; 320(4): E702-E715, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522396

RESUMO

Elevated postprandial lipemia is an independent risk factor for cardiovascular disease, yet methods to quantitate postmeal handling of dietary lipids in humans are limited. This study tested a new method to track dietary lipid appearance using a stable isotope tracer (2H11-oleate) in liquid meals containing three levels of fat [low fat (LF), 15 g; moderate fat (MF), 30 g; high fat (HF), 60 g]. Meals were fed to 12 healthy men [means ± SD, age 31.3 ± 9.2 yr, body mass index (BMI) 24.5 ± 1.9 kg/m2] during four randomized study visits; the HF meal was administered twice for reproducibility. Blood was collected over 8 h postprandially, triglyceride (TG)-rich lipoproteins (TRL), and particles with a Svedberg flotation rate >400 (Sf > 400, n = 8) were isolated by ultracentrifugation, and labeling of two TG species (54:3 and 52:2) was quantified by LC-MS. Total plasma TRL-TG concentrations were threefold greater than Sf > 400-TG. Both Sf > 400- and TRL-TG 54:3 were present at higher concentrations than 52:2, and singly labeled TG concentrations were higher than doubly labeled. Furthermore, TG 54:3 and the singly labeled molecules demonstrated higher plasma absolute entry rates differing significantly across fat levels within a single TG species (P < 0.01). Calculation of fractional entry showed no significant differences in label handling supporting the utility of either TG species for appearance rate calculations. These data demonstrate the utility of labeling research meals with stable isotopes to investigate human postprandial lipemia while simultaneously highlighting the importance of examining individual responses. Meal type and timing, control of prestudy activities, and effects of sex on outcomes should match the research goals. The method, optimized here, will be beneficial to conduct basic science research in precision nutrition and clinical drug development.NEW & NOTEWORTHY A novel method to test human intestinal lipid handling using stable isotope labeling is presented and, for the first time, plasma appearance and lipid turnover were quantified in 12 healthy men following meals with varying amounts of fat. The method can be applied to studies in precision nutrition characterizing individual response to support basic science research or drug development. This report discusses key questions for consideration in precision nutrition that were highlighted by the data.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Hiperlipidemias/sangue , Lipídeos/sangue , Período Pós-Prandial , Espectrometria de Massas em Tandem/métodos , Adolescente , Adulto , Cromatografia Líquida/métodos , Estudos Cross-Over , Gorduras na Dieta/administração & dosagem , Humanos , Hiperlipidemias/diagnóstico , Lipídeos/análise , Masculino , Refeições , Ciências da Nutrição/métodos , Ciências da Nutrição/tendências , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Reprodutibilidade dos Testes , Adulto Jovem
7.
Anal Chem ; 93(15): 6071-6079, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33819010

RESUMO

The primary goal of high-throughput screening (HTS) is to rapidly survey a broad collection of compounds, numbering from tens of thousands to millions of members, and identify those that modulate the activity of a therapeutic target of interest. For nearly two decades, mass spectrometry has been used as a label-free, direct-detection method for HTS and is widely acknowledged as being less susceptible to interferences than traditional optical techniques. Despite these advantages, the throughput of conventional MS-based platforms like RapidFire or parallel LC-MS, which typically acquire data at speeds of 6-30 s/sample, can still be limiting for large HTS campaigns. To overcome this bottleneck, the field has recently turned to chromatography-free approaches including MALDI-TOF-MS and acoustic droplet ejection-MS, both of which are capable of throughputs of 1 sample/second or faster. In keeping with these advances, we report here on our own characterization of an acoustic droplet ejection, open port interface (ADE-OPI)-MS system as a platform for HTS using the membrane-associated, lipid metabolizing enzyme diacylglycerol acyltransferase 2 (DGAT2) as a model system. We demonstrate for the first time that the platform is capable of ejecting droplets from phase-separated samples, allowing direct coupling of liquid-liquid extraction with OPI-MS analysis. By applying the platform to screen a 6400-member library, we further demonstrate that the ADE-OPI-MS assay is suitable for HTS and also performs comparably to LC-MS, but with an efficiency gain of >20-fold.


Assuntos
Diacilglicerol O-Aciltransferase , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Acústica , Cromatografia Líquida , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Am J Physiol Endocrinol Metab ; 316(6): E1105-E1117, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30912961

RESUMO

The regulation of nutrient homeostasis, i.e., the ability to transition between fasted and fed states, is fundamental in maintaining health. Since food is typically consumed over limited (anabolic) periods, dietary components must be processed and stored to counterbalance the catabolic stress that occurs between meals. Herein, we contrast tissue- and pathway-specific metabolic activity in fasted and fed states. We demonstrate that knowledge of biochemical kinetics that is obtained from opposite ends of the energetic spectrum can allow mechanism-based differentiation of healthy and disease phenotypes. Rat models of type 1 and type 2 diabetes serve as case studies for probing spatial and temporal patterns of metabolic activity via [2H]water labeling. Experimental designs that capture integrative whole body metabolism, including meal-induced substrate partitioning, can support an array of research surrounding metabolic disease; the relative simplicity of the approach that is discussed here should enable routine applications in preclinical models.


Assuntos
Aminoácidos/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Animais , Óxido de Deutério , Modelos Animais de Doenças , Glicogênio/metabolismo , Cinética , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Redes e Vias Metabólicas , Metabolômica , Ratos , Ratos Wistar , Ratos Zucker , Análise Espaço-Temporal
9.
Angew Chem Int Ed Engl ; 58(49): 17594-17598, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31589796

RESUMO

A multiplexed system based on inductive nanoelectrospray mass spectrometry (nESI-MS) has been developed for high-throughput screening (HTS) bioassays. This system combines inductive nESI and field amplification micro-electrophoresis to achieve a "dip-and-go" sample loading and purification strategy that enables nESI-MS based HTS assays in 96-well microtiter plates. The combination of inductive nESI and micro-electrophoresis makes it possible to perform efficient in situ separations and clean-up of biological samples. The sensitivity of the system is such that quantitative analysis of peptides from 1-10 000 nm can be performed in a biological matrix. A prototype of the automation system has been developed to handle 12 samples (one row of a microtiter plate) at a time. The sample loading and electrophoretic clean-up of biosamples can be done in parallel within 20 s followed by MS analysis at a rate of 1.3 to 3.5 s per sample. The system was used successfully for the quantitative analysis of BACE1-catalyzed peptide hydrolysis, a prototypical HTS assay of relevance to drug discovery. IC50 values for this system were in agreement with LC-MS but recorded in times more than an order of magnitude shorter.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ensaios de Triagem em Larga Escala , Peptídeos/análise , Cromatografia Líquida de Alta Pressão , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Hidrólise , Cinética , Limite de Detecção , Nanoestruturas/química , Oligopeptídeos/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos
10.
Am J Physiol Endocrinol Metab ; 315(3): E416-E424, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29509438

RESUMO

Numerous studies have implicated dyslipidemia as a key factor in mediating insulin resistance. Ceramides have received special attention since their levels are inversely associated with normal insulin signaling and positively associated with factors that are involved in cardiometabolic disease. Despite the growing literature surrounding ceramide biology, there are limited data regarding the activity of ceramide synthesis and turnover in vivo. Herein, we demonstrate the ability to measure ceramide kinetics by coupling the administration of [2H]water with LC-MS/MS analyses. As a "proof-of-concept" we determined the effect of a diet-induced alteration on ceramide flux; studies also examined the effect of myriocin (a known inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis). Our data suggest that one can estimate ceramide synthesis and draw conclusions regarding the source of fatty acids; we discuss caveats in regards to method development in this area.


Assuntos
Ceramidas/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Óxido de Deutério/farmacocinética , Dieta , Inibidores Enzimáticos , Ácidos Graxos Monoinsaturados/farmacologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Traçadores Radioativos , Serina C-Palmitoiltransferase/antagonistas & inibidores , Espectrometria de Massas em Tandem
11.
J Pharmacol Exp Ther ; 363(1): 80-91, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28724692

RESUMO

Drug discovery and development efforts are largely based around a common expectation, namely, that direct or indirect action on a cellular process (e.g., statin-mediated enzyme inhibition or insulin-stimulated receptor activation) will have a beneficial impact on physiologic homeostasis. To expand on this, one could argue that virtually all pharmacologic interventions attempt to influence the flow of "traffic" in a biochemical network, irrespective of disease or modality. Since stable isotope tracer kinetic methods provide a measure of traffic flow (i.e., metabolic flux), their inclusion in study designs can yield novel information regarding pathway biology; the application of such methods requires the integration of knowledge in physiology, analytical chemistry, and mathematical modeling. Herein, we review the fundamental concepts that surround the use of tracer kinetics, define basic terms, and outline guiding principles via theoretical and experimental problems. Specifically, one needs to 1) recognize the types of biochemical events that change isotopic enrichments, 2) appreciate the distinction between fractional turnover and flux rate, and 3) be aware of the subtle differences between tracer kinetics and pharmacokinetics. We hope investigators can use the framework presented here to develop applications that address their specific questions surrounding biochemical flux, and thereby gain insight into the pathophysiology of disease states, and examine pharmacodynamic mechanisms.


Assuntos
Descoberta de Drogas/métodos , Análise do Fluxo Metabólico/métodos , Animais , Humanos , Marcação por Isótopo , Isótopos/química , Água/química , Água/metabolismo
12.
Anal Biochem ; 518: 9-15, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815077

RESUMO

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore ß-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.


Assuntos
Espectrometria de Massas/métodos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Ácidos Teicoicos/metabolismo , Cromatografia Líquida/métodos , Staphylococcus aureus Resistente à Meticilina/química , Ácidos Teicoicos/química , Tunicamicina/farmacologia
13.
J Lipid Res ; 57(3): 398-409, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26658238

RESUMO

Studies in lipoprotein kinetics almost exclusively rely on steady-state approaches to modeling. Herein, we have used a non-steady-state experimental design to examine the role of cholesteryl ester transfer protein (CETP) in mediating HDL-TG flux in vivo in rhesus macaques, and therefore, we developed an alternative strategy to model the data. Two isotopomers ([(2)H11] and [(13)C18]) of oleic acid were administered (orally and intravenously, respectively) to serve as precursors for labeling TGs in apoB-containing lipoproteins. The flux of a specific TG (52:2) from these donor lipoproteins to HDL was used as the measure of CETP activity; calculations are also presented to estimate total HDL-TG flux. Based on our data, we estimate that the peak total postprandial TG flux to HDL via CETP is ∼ 13 mg · h(-1) · kg(-1) and show that this transfer was inhibited by 97% following anacetrapib treatment. Collectively, these data demonstrate that HDL TG flux can be used as a measure of CETP activity in vivo. The fact that the donor lipoproteins can be labeled in situ using well-established stable isotope tracer techniques suggests ways to measure this activity for native lipoproteins in free-living subjects under any physiological conditions.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Oxazolidinonas/farmacologia , Triglicerídeos/metabolismo , Animais , Lipoproteínas HDL/sangue , Macaca mulatta , Masculino , Modelos Biológicos , Triglicerídeos/sangue
14.
J Lipid Res ; 57(12): 2150-2162, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27707816

RESUMO

SREBP cleavage-activating protein (SCAP) is a key protein in the regulation of lipid metabolism and a potential target for treatment of dyslipidemia. SCAP is required for activation of the transcription factors SREBP-1 and -2. SREBPs regulate the expression of genes involved in fatty acid and cholesterol biosynthesis, and LDL-C clearance through the regulation of LDL receptor (LDLR) and PCSK9 expression. To further test the potential of SCAP as a novel target for treatment of dyslipidemia, we used siRNAs to inhibit hepatic SCAP expression and assess the effect on PCSK9, LDLR, and lipids in mice and rhesus monkeys. In mice, robust liver Scap mRNA knockdown (KD) was achieved, accompanied by dose-dependent reduction in SREBP-regulated gene expression, de novo lipogenesis, and plasma PCSK9 and lipids. In rhesus monkeys, over 90% SCAP mRNA KD was achieved resulting in approximately 75, 50, and 50% reduction of plasma PCSK9, TG, and LDL-C, respectively. Inhibition of SCAP function was demonstrated by reduced expression of SREBP-regulated genes and de novo lipogenesis. In conclusion, siRNA-mediated inhibition of SCAP resulted in a significant reduction in circulating PCSK9 and LDL-C in rodent and primate models supporting SCAP as a novel target for the treatment of dyslipidemia.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipídeos/sangue , Proteínas de Membrana/genética , Pró-Proteína Convertase 9/genética , RNA Interferente Pequeno/genética , Receptores de LDL/genética , Animais , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipolipemiantes/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese , Fígado/enzimologia , Macaca mulatta , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de LDL/metabolismo , Transdução de Sinais , Sinvastatina/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
15.
Anal Bioanal Chem ; 408(1): 97-105, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26511226

RESUMO

Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that affect a broad range of physiological processes, including cell proliferation, inflammation, inflammation resolution, and vascular function. Moreover, oxylipins are readily detectable in plasma, and certain subsets of oxylipins have been detected in human atherosclerotic lesions. Taken together, we set out to produce a detailed quantitative assessment of plasma and plaque oxylipins in a widely used model of atherosclerosis, to identify potential biomarkers of disease progression. We administered regular chow or regular chow supplemented with 0.5% cholesterol (HC) to male New Zealand white rabbits for 12 weeks to induce hypercholesterolemia and atherosclerosis. Our targeted lipidomic analyses of oxylipins on plaques isolated from rabbits fed the HC diet detected 34 oxylipins, 28 of which were in compliance with our previously established quality control acceptance criteria. The arachidonic acid (AA) metabolite derived from the COX pathway, 6-keto-PGF1α was the most abundant plaque oxylipin, followed by the linoleic acid (LA) metabolites 9-HODE, 13-HODE and 9,12,13-TriHOME and the arachidonic acid (AA)-derivatives 11-HETE and 12-HETE. We additionally found that the most abundant oxylipins in plasma were three of the five most abundant oxylipins in plaque, namely 11-HETE, 13-HODE, and 9-HODE. The studies reported here make the first step towards a comprehensive characterization of oxylipins as potentially translatable biomarkers of atherosclerosis.


Assuntos
Hipercolesterolemia/sangue , Oxilipinas/sangue , Placa Aterosclerótica/sangue , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Masculino , Espectrometria de Massas , Oxilipinas/metabolismo , Placa Aterosclerótica/metabolismo , Coelhos
16.
J Dairy Sci ; 99(5): 3512-3528, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923052

RESUMO

There is interest in the reincorporation of legumes and forbs into pasture-based dairy production systems as a means of increasing milk production through addressing the nutritive value limitations of grass pastures. The experiments reported in this paper were undertaken to evaluate milk production, blood metabolite concentrations, and forage intake levels of cows grazing either pasture mixtures or spatially adjacent monocultures containing perennial ryegrass (Lolium perenne), white clover (Trifolium repens), and plantain (Plantago lanceolata) compared with cows grazing monocultures of perennial ryegrass. Four replicate herds, each containing 4 spring-calving, cross-bred dairy cows, grazed 4 different forage treatments over the periods of early, mid, and late lactation. Forage treatments were perennial ryegrass monoculture (PRG), a mixture of white clover and plantain (CPM), a mixture of perennial ryegrass, white clover, and plantain (RCPM), and spatially adjacent monocultures (SAM) of perennial ryegrass, white clover, and plantain. Milk volume, milk composition, blood fatty acids, blood ß-hydroxybutyrate, blood urea N concentrations, live weight change, and estimated forage intake were monitored over a 5-d response period occurring after acclimation to each of the forage treatments. The acclimation period for the early, mid, and late lactation experiments were 13, 13, and 10 d, respectively. Milk yield (volume and milk protein) increased for cows grazing the RCPM and SAM in the early lactation experiment compared with cows grazing the PRG, whereas in the mid lactation experiment, milk fat increased for the cows grazing the RCPM and SAM when compared with the PRG treatments. Improvements in milk production from grazing the RCPM and SAM treatments are attributed to improved nutritive value (particularly lower neutral detergent fiber concentrations) and a potential increase in forage intake. Pasture mixtures or SAM containing plantain and white clover could be a strategy for alleviating the nutritive limitations of perennial ryegrass monocultures, leading to an increase in milk production for spring calving dairy cows during early and mid lactation.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Comportamento Alimentar , Lactação , Leite/metabolismo , Ração Animal/análise , Animais , Análise Química do Sangue/veterinária , Feminino , Lolium/química , Plantago/química , Tasmânia , Trifolium/química
17.
Biochim Biophys Acta ; 1842(3): 402-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23707557

RESUMO

Our ability to understand the pathogenesis of problems surrounding lipid accretion requires attention towards quantifying lipid kinetics. In addition, studies of metabolic flux should also help unravel mechanisms that lead to imbalances in inter-organ lipid trafficking which contribute to dyslipidemia and/or peripheral lipid accumulation (e.g. hepatic fat deposits). This review aims to outline the development and use of novel methods for studying lipid kinetics in vivo. Although our focus is directed towards some of the approaches that are currently reported in the literature, we include a discussion of the older literature in order to put "new" methods in better perspective and inform readers of valuable historical research. Presumably, future advances in understanding lipid dynamics will benefit from a careful consideration of the past efforts, where possible we have tried to identify seminal papers or those that provide clear data to emphasize essential points. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.


Assuntos
Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Triglicerídeos/metabolismo , Distribuição da Gordura Corporal , Colesterol/biossíntese , Colesterol/metabolismo , Metabolismo Energético , Humanos , Cinética , Triglicerídeos/química
18.
Transgenic Res ; 24(1): 147-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25204701

RESUMO

Genome editing tools enable efficient and accurate genome manipulation. An enhanced ability to modify the genomes of livestock species could be utilized to improve disease resistance, productivity or breeding capability as well as the generation of new biomedical models. To date, with respect to the direct injection of genome editor mRNA into livestock zygotes, this technology has been limited to the generation of pigs with edited genomes. To capture the far-reaching applications of gene-editing, from disease modelling to agricultural improvement, the technology must be easily applied to a number of species using a variety of approaches. In this study, we demonstrate zygote injection of TALEN mRNA can also produce gene-edited cattle and sheep. In both species we have targeted the myostatin (MSTN) gene. In addition, we report a critical innovation for application of gene-editing to the cattle industry whereby gene-edited calves can be produced with specified genetics by ovum pickup, in vitro fertilization and zygote microinjection (OPU-IVF-ZM). This provides a practical alternative to somatic cell nuclear transfer for gene knockout or introgression of desirable alleles into a target breed/genetic line.


Assuntos
Animais Geneticamente Modificados/genética , Genoma , Miostatina/genética , Carneiro Doméstico/genética , Animais , Cruzamento , Bovinos , Fertilização in vitro , Engenharia Genética , Gado , Técnicas de Transferência Nuclear , Zigoto
19.
Biotechnol Bioeng ; 112(5): 1060-4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25362885

RESUMO

The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes.


Assuntos
Deleção Cromossômica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quebras de DNA de Cadeia Dupla , DNA/genética , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Sequência de Bases , Linhagem Celular , Endonucleases/genética , Engenharia Genética/métodos , Humanos , Dados de Sequência Molecular
20.
Bioorg Med Chem ; 23(3): 455-65, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25555732

RESUMO

Stearoyl-CoA desaturase-1 (SCD1) plays an important role in lipid metabolism. Inhibition of SCD1 activity represents a potential novel approach for the treatment of metabolic diseases such as obesity, type 2 diabetes and dyslipidemia, as well as skin diseases, acne and cancer. Herein, we report the synthesis and structure-activity relationships (SAR) of a series of novel triazolone derivatives, culminating in the identification of pyrazolyltriazolone 17a, a potent SCD1 inhibitor, which reduced plasma C16:1/C16:0 triglycerides desaturation index (DI) in an acute Lewis rat model in a dose dependent manner, with an ED50 of 4.6 mg/kg. In preliminary safety studies, compound 17a did not demonstrate adverse effects related to SCD1 inhibition after repeat dosing at 100mg/kg. Together, these data suggest that sufficient safety margins can be achieved with certain SCD1 inhibitors, thus allowing exploration of clinical utility in metabolic disease settings.


Assuntos
Estearoil-CoA Dessaturase/antagonistas & inibidores , Triazóis/química , Triazóis/farmacologia , Animais , Descoberta de Drogas , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Camundongos , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA