Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biochemistry ; 60(20): 1587-1596, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33942609

RESUMO

Methylcobalamin-dependent radical S-adenosylmethionine (SAM) enzymes methylate non-nucleophilic atoms in a range of substrates. The mechanism of the methyl transfer from cobalt to the receiving atom is still mostly unresolved. Here we determine the stereochemical course of this process at the methyl group during the biosynthesis of the clinically used antibiotic fosfomycin. In vitro reaction of the methyltransferase Fom3 using SAM labeled with 1H, 2H, and 3H in a stereochemically defined manner, followed by chemoenzymatic conversion of the Fom3 product to acetate and subsequent stereochemical analysis, shows that the overall reaction occurs with retention of configuration. This outcome is consistent with a double-inversion process, first in the SN2 reaction of cob(I)alamin with SAM to form methylcobalamin and again in a radical transfer of the methyl group from methylcobalamin to the substrate. The methods developed during this study allow high-yield in situ generation of labeled SAM and recombinant expression and purification of the malate synthase needed for chiral methyl analysis. These methods facilitate the broader use of in vitro chiral methyl analysis techniques to investigate the mechanisms of other novel enzymes.


Assuntos
Fosfomicina/biossíntese , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Proteínas de Bactérias/metabolismo , Monofosfato de Citidina/metabolismo , Fosfomicina/química , Metilação , Metiltransferases/metabolismo , Organofosfonatos/metabolismo , S-Adenosilmetionina/química , Estereoisomerismo , Streptomyces/enzimologia , Vitamina B 12/química
2.
Proc Natl Acad Sci U S A ; 113(34): 9446-50, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506792

RESUMO

Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms at the unactivated C6 and C8 positions of a protein-bound octanoyl chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethionine (AdoMet) radical chemistry; the remainder of the reaction mechanism, especially the source of the sulfur, has been less clear. One controversial proposal involves the removal of sulfur from a second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in destruction of the cluster during each round of catalysis. Here, we present two high-resolution crystal structures of LipA from Mycobacterium tuberculosis: one in its resting state and one at an intermediate state during turnover. In the resting state, an auxiliary [4Fe-4S] cluster has an unusual serine ligation to one of the irons. After reaction with an octanoyllysine-containing 8-mer peptide substrate and 1 eq AdoMet, conditions that allow for the first sulfur insertion but not the second insertion, the serine ligand dissociates from the cluster, the iron ion is lost, and a sulfur atom that is still part of the cluster becomes covalently attached to C6 of the octanoyl substrate. This intermediate structure provides a clear picture of iron-sulfur cluster destruction in action, supporting the role of the auxiliary cluster as the sulfur source in the LipA reaction and describing a radical strategy for sulfur incorporation into completely unactivated substrates.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Mycobacterium tuberculosis/química , S-Adenosilmetionina/química , Enxofre/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ferro/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Enxofre/metabolismo
3.
Biochemistry ; 57(33): 4967-4971, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29969250

RESUMO

Fom3, the antepenultimate enzyme in the fosfomycin biosynthetic pathway in Streptomyces spp., is a class B cobalamin-dependent radical SAM methyltransferase that catalyzes methylation of (5'-cytidylyl)-2-hydroxyethylphosphonate (2-HEP-CMP) to form (5'-cytidylyl)-2-hydroxypropylphosphonate (2-HPP-CMP). Previously, the reaction of Fom3 with 2-HEP-CMP produced 2-HPP-CMP with mixed stereochemistry at C2. Mechanistic characterization has been challenging because of insoluble expression and poor cobalamin (B12) incorporation in Escherichia coli. Recently, soluble E. coli expression and incorporation of cobalamin into Fom3 were achieved by overexpression of the BtuCEDFB cobalamin uptake system. Herein, we use this new method to obtain Fom3 from Streptomyces wedmorensis. We show that the initiator 5'-deoxyadenosyl radical stereospecifically abstracts the pro- R hydrogen atom from the C2 position of 2-HEP-CMP and use the downstream enzymes FomD and Fom4 to demonstrate that our preparation of Fom3 produces only (2 S)-2-HPP-CMP. Additionally, we show that the added methyl group originates from SAM under multiple-turnover conditions, but the first turnover uses a methyl donor already present on the enzyme; furthermore, cobalamin isolated from Fom3 reaction mixtures contains methyl groups derived from SAM. These results are consistent with a model in which Fom3 catalyzes methyl transfer from SAM to cobalamin and the resulting methylcobalamin (MeCbl) is the ultimate methyl source for the reaction.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Fosfomicina/química , Metiltransferases/química , Vitamina B 12/química , Antibacterianos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/química , Escherichia coli/genética , Fosfomicina/biossíntese , Radicais Livres/química , Metilação , Metiltransferases/genética , Metiltransferases/isolamento & purificação , Modelos Químicos , Organofosfonatos/química , S-Adenosilmetionina/química , Estereoisomerismo , Streptomyces/enzimologia
4.
BMC Cancer ; 17(1): 86, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28143445

RESUMO

BACKGROUND: Concurrent cisplatin radiotherapy (CCRT) is a current standard-of-care for locally advanced head and neck squamous cell carcinoma (HNSCC). However, CCRT is frequently ineffective in patients with advanced disease. It has previously been shown that HSP90 inhibitors act as radiosensitizers, but these studies have not focused on CCRT in HNSCC. Here, we evaluated the HSP90 inhibitor, AUY922, combined with CCRT. METHODS: The ability of AUY922 to sensitize to CCRT was assessed in p53 mutant head and neck cell lines by clonogenic assay. Modulation of the CCRT induced DNA damage response (DDR) by AUY922 was characterized by confocal image analysis of RAD51, BRCA1, 53BP1, ATM and mutant p53 signaling. The role of FANCA depletion by AUY922 was examined using shRNA. Cell cycle checkpoint abrogation and chromosomal fragmentation was assessed by western blot, FACS and confocal. The role of ATM was also assessed by shRNA. AUY922 in combination with CCRT was assessed in vivo. RESULTS: The combination of AUY922 with cisplatin, radiation and CCRT was found to be synergistic in p53 mutant HNSCC. AUY922 leads to significant alterations to the DDR induced by CCRT. This comprises inhibition of homologous recombination through decreased RAD51 and pS1524 BRCA1 with a corresponding increase in 53BP1 foci, activation of ATM and signaling into mutant p53. A shift to more error prone repair combined with a loss of checkpoint function leads to fragmentation of chromosomal material. The degree of disruption to DDR signalling correlated to chromosomal fragmentation and loss of clonogenicity. ATM shRNA indicated a possible rationale for the combination of AUY922 and CCRT in cells lacking ATM function. CONCLUSIONS: This study supports future clinical studies combining AUY922 and CCRT in p53 mutant HNSCC. Modulation of the DDR and chromosomal fragmentation are likely to be analytical points of interest in such trials.


Assuntos
Cromossomos/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Isoxazóis/farmacologia , Compostos Organoplatínicos/farmacologia , Resorcinóis/farmacologia , Animais , Proteína BRCA1/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Quimiorradioterapia/métodos , Cromossomos/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/genética
5.
Biochemistry ; 55(2): 373-81, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26727048

RESUMO

Ribonucleotide reductases (RNRs) are responsible for all de novo biosynthesis of DNA precursors in nature by catalyzing the conversion of ribonucleotides to deoxyribonucleotides. Because of its essential role in cell division, human RNR is a target for a number of anticancer drugs in clinical use. Like other class Ia RNRs, human RNR requires both a radical-generation subunit (ß) and nucleotide-binding subunit (α) for activity. Because of their complex dependence on allosteric effectors, however, the active and inactive quaternary forms of many class Ia RNRs have remained in question. Here, we present an X-ray crystal structure of the human α subunit in the presence of inhibiting levels of dATP, depicting a ring-shaped hexamer (α6) where the active sites line the inner hole. Surprisingly, our small-angle X-ray scattering (SAXS) results indicate that human α forms a similar hexamer in the presence of ATP, an activating effector. In both cases, α6 is assembled from dimers (α2) without a previously proposed tetramer intermediate (α4). However, we show with SAXS and electron microscopy that at millimolar ATP, the ATP-induced α6 can further interconvert with higher-order filaments. Differences in the dATP- and ATP-induced α6 were further examined by SAXS in the presence of the ß subunit and by activity assays as a function of ATP or dATP. Together, these results suggest that dATP-induced α6 is more stable than the ATP-induced α6 and that stabilization of this ring-shaped configuration provides a mechanism to prevent access of the ß subunit to the active site of α.


Assuntos
Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Regulação Alostérica , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
J Am Chem Soc ; 138(23): 7224-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27224840

RESUMO

Quinolinic acid (QA) is a common intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD(+)) and its derivatives in all organisms that synthesize the molecule de novo. In most prokaryotes, it is formed from the condensation of dihydroxyacetone phosphate (DHAP) and aspartate-enamine by the action of quinolinate synthase (NadA). NadA contains a [4Fe-4S] cluster cofactor with a unique, non-cysteinyl-ligated, iron ion (Fea), which is proposed to bind the hydroxyl group of a postulated intermediate in the last step of the reaction to facilitate a dehydration. However, direct evidence for this role in catalysis has yet to be provided. Herein, we present the structure of NadA in the presence of the product of its reaction, QA. We find that N1 and the C7 carboxylate group of QA ligate to Fea in a bidentate fashion, which is confirmed by Hyperfine Sublevel Correlation (HYSCORE) spectroscopy. This binding mode would place the C5 hydroxyl group of the postulated final intermediate distal to Fea and virtually incapable of coordinating to it. The structure shows that three strictly conserved amino acids, Glu198, Tyr109, and Tyr23, are in close proximity to the bound product. Substitution of these amino acids with Gln, Phe, and Phe, respectively, leads to complete loss of activity.


Assuntos
Complexos Multienzimáticos/química , Pyrococcus horikoshii/enzimologia , Ácido Quinolínico/química , Ácido Aspártico/química , Sítios de Ligação , Catálise , Fosfato de Di-Hidroxiacetona/química , Modelos Moleculares , Conformação Proteica
7.
Mol Ther ; 23(5): 931-942, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25619724

RESUMO

Reovirus type 3 (Dearing) (RT3D) infection is selective for cells harboring a mutated/activated RAS pathway. Therefore, in a panel of melanoma cell lines (including RAS mutant, BRAF mutant and RAS/BRAF wild-type), we assessed therapeutic combinations that enhance/suppress ERK1/2 signaling through use of BRAF/MEK inhibitors. In RAS mutant cells, the combination of RT3D with the BRAF inhibitor PLX4720 (paradoxically increasing ERK1/2 signaling in this context) did not enhance reoviral cytotoxicity. Instead, and somewhat surprisingly, RT3D and BRAF inhibition led to enhanced cell kill in BRAF mutated cell lines. Likewise, ERK1/2 inhibition, using the MEK inhibitor PD184352, in combination with RT3D resulted in enhanced cell kill in the entire panel. Interestingly, TCID50 assays showed that BRAF and MEK inhibitors did not affect viral replication. Instead, enhanced efficacy was mediated through ER stress-induced apoptosis, induced by the combination of ERK1/2 inhibition and reovirus infection. In vivo, combined treatments of RT3D and PLX4720 showed significantly increased activity in BRAF mutant tumors in both immune-deficient and immune-competent models. These data provide a strong rationale for clinical translation of strategies in which RT3D is combined with BRAF inhibitors (in BRAF mutant melanoma) and/or MEK inhibitors (in BRAF and RAS mutant melanoma).


Assuntos
Estresse do Retículo Endoplasmático , Melanoma/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Terapia Viral Oncolítica , Vírus Oncolíticos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Reoviridae/fisiologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/administração & dosagem , Benzamidas/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ativação Enzimática , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteína Oncogênica p21(ras)/genética , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Proc Natl Acad Sci U S A ; 110(21): 8519-24, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23650368

RESUMO

Arylsulfatases require a maturating enzyme to perform a co- or posttranslational modification to form a catalytically essential formylglycine (FGly) residue. In organisms that live aerobically, molecular oxygen is used enzymatically to oxidize cysteine to FGly. Under anaerobic conditions, S-adenosylmethionine (AdoMet) radical chemistry is used. Here we present the structures of an anaerobic sulfatase maturating enzyme (anSME), both with and without peptidyl-substrates, at 1.6-1.8 Å resolution. We find that anSMEs differ from their aerobic counterparts in using backbone-based hydrogen-bonding patterns to interact with their peptidyl-substrates, leading to decreased sequence specificity. These anSME structures from Clostridium perfringens are also the first of an AdoMet radical enzyme that performs dehydrogenase chemistry. Together with accompanying mutagenesis data, a mechanistic proposal is put forth for how AdoMet radical chemistry is coopted to perform a dehydrogenation reaction. In the oxidation of cysteine or serine to FGly by anSME, we identify D277 and an auxiliary [4Fe-4S] cluster as the likely acceptor of the final proton and electron, respectively. D277 and both auxiliary clusters are housed in a cysteine-rich C-terminal domain, termed SPASM domain, that contains homology to ~1,400 other unique AdoMet radical enzymes proposed to use [4Fe-4S] clusters to ligate peptidyl-substrates for subsequent modification. In contrast to this proposal, we find that neither auxiliary cluster in anSME bind substrate, and both are fully ligated by cysteine residues. Instead, our structural data suggest that the placement of these auxiliary clusters creates a conduit for electrons to travel from the buried substrate to the protein surface.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/metabolismo , Radicais Livres/metabolismo , Glicina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , S-Adenosilmetionina/metabolismo , Anaerobiose/fisiologia , Proteínas de Bactérias/genética , Clostridium perfringens/genética , Glicina/análogos & derivados , Glicina/genética , Oxirredução , Estrutura Terciária de Proteína , S-Adenosilmetionina/genética
10.
Cell Death Dis ; 15(1): 32, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212297

RESUMO

Immune checkpoint blockade (ICB) provides effective and durable responses for several tumour types by unleashing an immune response directed against cancer cells. However, a substantial number of patients treated with ICB develop relapse or do not respond, which has been partly attributed to the immune-suppressive effect of tumour hypoxia. We have previously demonstrated that the mitochondrial complex III inhibitor atovaquone alleviates tumour hypoxia both in human xenografts and in cancer patients by decreasing oxygen consumption and consequently increasing oxygen availability in the tumour. Here, we show that atovaquone alleviates hypoxia and synergises with the ICB antibody anti-PD-L1, significantly improving the rates of tumour eradication in the syngeneic CT26 model of colorectal cancer. The synergistic effect between atovaquone and anti-PD-L1 relied on CD8+ T cells, resulted in the establishment of a tumour-specific memory immune response, and was not associated with any toxicity. We also tested atovaquone in combination with anti-PD-L1 in the LLC (lung) and MC38 (colorectal) cancer syngeneic models but, despite causing a considerable reduction in tumour hypoxia, atovaquone did not add any therapeutic benefit to ICB in these models. These results suggest that atovaquone has the potential to improve the outcomes of patients treated with ICB, but predictive biomarkers are required to identify individuals likely to benefit from this intervention.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Neoplasias , Humanos , Animais , Camundongos , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Neoplasias/tratamento farmacológico , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Antígeno B7-H1 , Microambiente Tumoral
11.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39060020

RESUMO

BACKGROUND: Over the past decade, cancer immunotherapies have revolutionized the treatment of melanoma; however, responses vary across patient populations. Recently, baseline tumor size has been identified as an independent prognostic factor for overall survival in patients with melanoma receiving immune checkpoint inhibitors. MG1 is a novel oncolytic agent with broad tumor tropism that has recently entered early-phase clinical trials. The aim of this study was to characterize T-cell responses in human and mouse melanoma models following MG1 treatment and to establish if features of the tumor immune microenvironment (TIME) at two distinct tumor burdens would impact the efficacy of oncolytic virotherapy. METHODS: Human three-dimensional in vitro priming assays were performed to measure antitumor and antiviral T-cell responses following MG1 infection. T-cell receptor (TCR) sequencing, T2 killing assay, and peptide recall assays were used to assess the evolution of the TCR repertoire, and measure specific T-cell responses, respectively. In vivo, subcutaneous 4434 melanomas were characterized using RNA sequencing, immunohistochemistry, and flow cytometry. The effectiveness of intratumoral MG1 was assessed in advancing 4434 tumors and the generation of antitumor and antiviral T cells measured by splenocyte recall assays. Finally, combination MG1 and programmed cell death protein-1 antibody (αPD-1) therapy was investigated in advanced 4434 tumors. RESULTS: MG1 effectively supported priming of functional cytotoxic T cells (CTLs) against tumor-associated antigens as well as virus-derived peptides, as assessed using peptide recall and T2 killing assays, respectively. TCR sequencing revealed that MG1-primed CTL comprised larger clusters of similar CDR3 amino acid sequences compared with controls. In vivo testing of MG1 demonstrated that MG1 monotherapy was highly effective at treating early disease, resulting in 90% cures; however, the efficacy of MG1 reduced as the disease burden (local tumor size) increased, and the addition of αPD-1 was required to overcome resistance in more advanced disease. Differential gene expression profiles revealed that increased tumor burden was associated with an immunologically colder TIME. Furthermore, analysis of TCR signaling in advancing tumors demonstrated a different dynamic of TCR engagement compared with smaller tumors, in particular a shift in antigen recognition by CD4+ cells, from conventional to regulatory subsets. CONCLUSION: Addition of αPD-1 to MG1 is required to overcome viral therapy resistance in immunologically 'colder' more advanced melanoma, highlighting the importance of tumor burden to different types of immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Receptores de Antígenos de Linfócitos T , Humanos , Animais , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Vírus Oncolíticos/imunologia , Terapia Viral Oncolítica/métodos , Transdução de Sinais , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/imunologia
12.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37934611

RESUMO

BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre.


Assuntos
Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Indóis , Inflamação/tratamento farmacológico , Genômica , Proteínas Mutadas de Ataxia Telangiectasia/genética
13.
ACS Chem Biol ; 17(4): 930-940, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35362960

RESUMO

3-Thiaglutamate is a recently identified amino acid analog originating from cysteine. During its biosynthesis, cysteinyl-tRNA is first enzymatically appended to the C-terminus of TglA, a 50-residue ribosomally translated peptide scaffold. After hydrolytic removal of the tRNA, this cysteine residue undergoes modification on the scaffold before eventual proteolysis of the nascent 3-thiaglutamyl residue to release 3-thiaglutamate and regenerate TglA. One of the modifications of TglACys requires a complex of two polypeptides, TglH and TglI, which uses nonheme iron and O2 to catalyze the removal of the peptidyl-cysteine ß-methylene group, oxidation of this Cß atom to formate, and reattachment of the thiol group to the α carbon. Herein, we use in vitro transcription-coupled translation and expressed protein ligation to characterize the role of the TglA scaffold in TglHI recognition and determine the specificity of TglHI with respect to the C-terminal residues of its substrate TglACys. The results of these experiments establish a synthetically accessible TglACys fragment sufficient for modification by TglHI and identify the l-selenocysteine analog of TglACys, TglASec, as an inhibitor of TglHI. These insights as well as a predicted structure and native mass spectrometry data set the stage for deeper mechanistic investigation of the complex TglHI-catalyzed reaction.


Assuntos
Cisteína , Selenocisteína , Catálise , Cisteína/metabolismo , Oxirredução , Peptídeos/química , Especificidade por Substrato
14.
Org Lett ; 24(21): 3802-3806, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35594569

RESUMO

An enantioselective Diels-Alder (DA) reaction of α-acyloxy enones has been developed to synthesize chiral oxidized cyclohexenes. Yttrium(III) triflate, in conjunction with a chiral pyridinebisimidazoline (PyBim) ligand, was found to catalyze the asymmetric [4 + 2] cycloaddition with a variety of dienes and α-acyloxy enone dienophiles. Using this method, terpinene-4-ol, a key intermediate in the synthesis of commercial herbicide cinmethylin, can be prepared in four steps from isoprene. A combination of kinetic data and NMR studies support a mechanism involving reversible binding of a dienophile to a yttrium catalyst followed by cycloaddition with a diene as the rate-determining step.


Assuntos
Monoterpenos , Polienos , Reação de Cicloadição , Polienos/química , Estereoisomerismo , Ítrio
15.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35314434

RESUMO

BACKGROUND: Despite therapeutic gains from immune checkpoint inhibitors (ICI) in many tumor types, new strategies are needed to extend treatment benefits, especially in patients failing to mount effective antitumor T-cell responses. Radiation and drug therapies can profoundly affect the tumor immune microenvironment. Here, we aimed to identify immunotherapies to increase the antitumor response conferred by combined ataxia telangiectasia and Rad3-related kinase inhibition and radiotherapy. METHODS: Using the human papillomavirus (HPV)-negative murine oral squamous cell carcinoma model, MOC2, we assessed the nature of the antitumor response following ataxia telangiectasia and Rad3-related inhibitor (ATRi)/radiotherapy (RT) by performing RNA sequencing and detailed flow cytometry analyses in tumors. The benefit of immunotherapies based on T cell immunoreceptor with Ig and ITIM domains (TIGIT) and Programmed cell death protein 1 (PD-1) immune checkpoint blockade following ATRi/RT treatment was assessed in the MOC2 model and confirmed in another HPV-negative murine oral squamous cell carcinoma model called SCC7. Finally, immune profiling was performed by flow cytometry on blood samples in patients with head and neck squamous cell carcinoma enrolled in the PATRIOT clinical trial of combined ATRi/RT. RESULTS: ATRi enhances radiotherapy-induced inflammation in the tumor microenvironment, with natural killer (NK) cells playing a central role in maximizing treatment efficacy. We demonstrated that antitumor activity of NK cells can be further boosted with ICI targeting TIGIT and PD-1. Analyses of clinical samples from patients receiving ATRi (ceralasertib) confirm the translational potential of our preclinical studies. CONCLUSION: This work delineates a previously unrecognized role for NK cells in the antitumor immune response to radiotherapy that can be augmented by small-molecule DNA damage-response inhibitors and immune checkpoint blockade.


Assuntos
Ataxia Telangiectasia , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Infecções por Papillomavirus , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/radioterapia , Dano ao DNA , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Receptor de Morte Celular Programada 1 , Receptores Imunológicos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
16.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338089

RESUMO

BACKGROUND: Combination herpes simplex virus (HSV) oncolytic virotherapy and BRAF inhibitors (BRAFi) represent promising immunogenic treatments for BRAF mutant melanoma, but an improved understanding of the immunobiology of combinations is needed to improve on the benefit of immune checkpoint inhibitors (ICI). METHODS: Using a BRAFV600E-driven murine melanoma model, we tested the immunogenicity of HSV/BRAFi in immunocompetent C57BL mice. In addition to standard FACS analysis, we used the 'Timer of Cell Kinetics and Activity' system, which can analyze the temporal dynamics of different T cell subsets. This immune data was used to inform the selection of ICI for triple combination therapy, the effects of which were then further characterized using transcriptomics. RESULTS: Adding BRAFi treatment to HSV improved anti-tumor effects in vivo but not in vitro. Immune characterization showed HSV or dual therapy led to fewer intratumoral Treg, although with a more activated phenotype, together with more effector CD8 +T cells. Tocky analysis further showed that HSV/BRAFi dual treatment reduced the Tocky signal (reflecting engagement with cognate antigen), in both Treg and conventional subsets of CD4+, but not in CD8 +cells. However, a higher percentage of Treg than of conventional CD4 +maintained frequent engagement with antigens on treatment, reflecting a predominance of suppressive over effector function within the CD4 +compartment. The only T cell subset which correlated with a reduction in tumor growth was within Tocky signal positive conventional CD4+, supporting their therapeutic role. Targeting CD25 high, antigen-engaged Treg with a depleting anti-CD25 ICI, achieved complete cures in 100% of mice with triple therapy. Transcriptomic analysis confirmed reduction in Foxp3 on addition of anti-CD25 to HSV/BRAFi, as well as increases in expression of genes reflecting interferon signaling and cytotoxic activity. CONCLUSIONS: Combination HSV/BRAFi is an immunogenic therapy for BRAF mutant melanoma, but cannot fully control tumors. Dual therapy results in changes in T cell dynamics within tumors, with relatively maintained antigen signaling in Treg compared with conv CD4+. Antigen-engaged CD4 +effectors correlate with tumor growth control, and depletion of Treg by addition of an anti-CD25 ICI, releasing suppression of conventional CD4 +effectors by Treg, enhances survival and activates immune signaling within tumors.


Assuntos
Herpes Simples , Melanoma , Vírus Oncolíticos , Animais , Linfócitos T CD4-Positivos , Humanos , Imunidade , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Vírus Oncolíticos/fisiologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
17.
J Biol Chem ; 285(10): 6960-9, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20054003

RESUMO

Interleukin-12 (IL-12), p80, and IL-23 are structurally related cytokines sharing a p40 subunit. We have recently demonstrated that celecoxib and its COX-2-independent analogue 4-trifluoromethyl-celecoxib (TFM-C) inhibit secretion but not transcription of IL-12 (p35/p40) and p80 (p40/p40). This is associated with a mechanism involving altered cytokine-chaperone interaction in the endoplasmic reticulum (ER). In the present study, we found that celecoxib and TFM-C also block secretion of IL-23 (p40/p19 heterodimers). Given the putative ER-centric mode of these compounds, we performed a comprehensive RT-PCR analysis of 23 ER-resident chaperones/foldases and associated co-factors. This revealed that TFM-C induced 1.5-3-fold transcriptional up-regulation of calreticulin, GRP78, GRP94, GRP170, ERp72, ERp57, ERdj4, and ERp29. However, more significantly, a 7-fold up-regulation of homocysteine-inducible ER protein (HERP) was observed. HERP is part of a high molecular mass protein complex involved in ER-associated protein degradation (ERAD). Using co-immunoprecipitation assays, we show that TFM-C induces protein interaction of p80 and IL-23 with HERP. Both HERP siRNA knockdown and HERP overexpression coupled to cycloheximide chase assays revealed that HERP is necessary for degradation of intracellularly retained p80 by TFM-C. Thus, our data suggest that targeting cytokine folding in the ER by small molecule drugs could be therapeutically exploited to alleviate inappropriate inflammation in autoimmune conditions.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Proteínas de Membrana/metabolismo , Pirazóis , Sulfonamidas , Animais , Celecoxib , Linhagem Celular , Cicloeximida/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/metabolismo , Ecdisterona/análogos & derivados , Ecdisterona/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Humanos , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Inibidores da Síntese de Proteínas/metabolismo , Pirazóis/química , Pirazóis/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
18.
Chemosphere ; 270: 129432, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33422997

RESUMO

The ability to chemically modify ionic liquids (ILs) has led to an expansion in interest in their use in a diversity of applications, not least as antimicrobials and biocides. Relatively little is known about cytotoxicity mechanisms of ILs in comparison to other biocides currently in widespread use, as well as their practical significance for the ecological environment and human health. Using NCTC 2544 and HaCat human keratinocyte cells, this study aimed to characterize cytotoxicity rates and mechanisms of a range of ILs. Using both lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) based cytotoxicity assays, it was confirmed that at biocide-relevant concentrations, ILs with longer alkyl chains exhibited greater biocidal activity than those with shorter alkyl chains, with comparable activity to the commonly used biocides chlorhexidine, benzalkonium chloride and cetylpyridinium chloride, at relevant in-use biocide concentrations. Mode of cell death, measured using fluorescence-activated cell sorting (FACS) and caspase 3/7 activity, determined necrosis to be the primary cytotoxic mechanism at higher concentrations of the biocides stated above, and with ILs [C14MIM]Cl and [C14quin]Br, with apoptosis observed at borderline necrotic concentrations. Perhaps most interestingly, modification of anion had a significant effect on cytotoxicity. The use of N[SO2CF3] as an anion to [C16MIM] attenuated cytotoxicity 10-fold in comparison to other anions, suggesting cytotoxicity may also be a tuneable property when using ILs as biocides.


Assuntos
Desinfetantes , Líquidos Iônicos , Ânions/farmacologia , Apoptose , Desinfetantes/toxicidade , Humanos , Líquidos Iônicos/toxicidade , Queratinócitos
19.
J Org Chem ; 75(23): 8048-59, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21069994

RESUMO

Regio-, diastereo-, and enantioselective coupling reactions between imines and allylic alcohols have been developed. These coupling reactions deliver complex homoallylic amine products through a convergent C-C bond forming process that does not proceed through intermediate allylic organometallic reagents. In general, convergent coupling, by exposure of an allylic alkoxide to a preformed Ti-imine complex, occurs with allylic transposition in a predictable and stereocontrolled manner. While simple diastereoselection in these reactions is high, delivering anti-products with ≥20:1 selectivity, the organometallic transformation described is compatible with a diverse range of functionality and substrates (including aliphatic and aromatic imines, allylic silanes, trisubstituted alkenes, vinyl- and aryl halides, trifluoromethyl groups, thioethers, and aromatic heterocycles). Alkene geometry of the products is a complex function of the allylic alcohol structure and is consistent with a mechanistic proposal based on syn-carbometalation followed by syn-elimination by way of a boat-like transition state geometry. Single asymmetric coupling reactions provide a means to translate the stereochemical information of the allylic alcohol to the homoallylic amine or to control diastereoselection in the coupling reactions of achiral allylic alcohols with chiral imines. Double asymmetric coupling reactions are also described that afford a unique means to control stereoselection in these complex convergent coupling processes. Finally, empirical models are proposed that are consistent with the observed stereochemical course of these coupling reactions en route to chiral homoallylic amines possessing di- or trisubstituted alkenes and anti- or syn- relative stereochemistry at the allylic and homoallylic positions.


Assuntos
Aminas/química , Aminas/síntese química , Reagentes de Ligações Cruzadas/química , Iminas/química , Propanóis/química , Alcenos/química , Estrutura Molecular , Estereoisomerismo
20.
European J Org Chem ; 2010(3): 391-409, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24634606

RESUMO

The present microreview summarizes our progress over the last few years in defining regioselective reductive cross-coupling reactions of unsymmetrical alkynes with terminal- and internal alkynes, aldehydes, and imines. We begin with a brief historical perspective of metal-mediated reductive dimerization reactions of aromatic alkynes and discuss the challenges associated with "crossed" versions of this mode of reactivity. Next, a collection of available methods that allow for regioselective reductive cross-coupling of internal alkynes with terminal and internal alkynes, aldehydes, and imines is summarized. After an examination of the requirements for regioselectivity in these cases, the logic behind our design of alkoxide-directed titanium-mediated reductive cross-coupling reactions is presented. A nomenclature is introduced to delineate the presumed mechanistic origin of regioselection associated with each reaction design, and a presentation of alkoxide-directed regioselective reductive cross-coupling reactions of alkynes follows. Throughout, principal issues related to reactivity and selectivity are discussed to assess scope and limitations of available methods and to describe the broad challenges that exist for defining complex fragment union reactions based on reductive cross-coupling chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA