Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 184(12): 3222-3241.e26, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004146

RESUMO

The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.


Assuntos
Hipocampo/citologia , Neocórtex/citologia , Transcriptoma/genética , Animais , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Nature ; 624(7991): 403-414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092914

RESUMO

The brain controls nearly all bodily functions via spinal projecting neurons (SPNs) that carry command signals from the brain to the spinal cord. However, a comprehensive molecular characterization of brain-wide SPNs is still lacking. Here we transcriptionally profiled a total of 65,002 SPNs, identified 76 region-specific SPN types, and mapped these types into a companion atlas of the whole mouse brain1. This taxonomy reveals a three-component organization of SPNs: (1) molecularly homogeneous excitatory SPNs from the cortex, red nucleus and cerebellum with somatotopic spinal terminations suitable for point-to-point communication; (2) heterogeneous populations in the reticular formation with broad spinal termination patterns, suitable for relaying commands related to the activities of the entire spinal cord; and (3) modulatory neurons expressing slow-acting neurotransmitters and/or neuropeptides in the hypothalamus, midbrain and reticular formation for 'gain setting' of brain-spinal signals. In addition, this atlas revealed a LIM homeobox transcription factor code that parcellates the reticulospinal neurons into five molecularly distinct and spatially segregated populations. Finally, we found transcriptional signatures of a subset of SPNs with large soma size and correlated these with fast-firing electrophysiological properties. Together, this study establishes a comprehensive taxonomy of brain-wide SPNs and provides insight into the functional organization of SPNs in mediating brain control of bodily functions.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Vias Neurais , Neurônios , Medula Espinal , Animais , Camundongos , Hipotálamo , Neurônios/metabolismo , Neuropeptídeos , Medula Espinal/citologia , Medula Espinal/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Neurotransmissores , Mesencéfalo/citologia , Formação Reticular/citologia , Eletrofisiologia , Cerebelo/citologia , Córtex Cerebral/citologia
3.
Nature ; 624(7991): 317-332, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092916

RESUMO

The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.


Assuntos
Encéfalo , Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/metabolismo , Conjuntos de Dados como Assunto , Hibridização in Situ Fluorescente , Vias Neurais , Neurônios/classificação , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , RNA/análise , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição/metabolismo , Transcriptoma/genética
4.
Nature ; 598(7879): 111-119, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616062

RESUMO

The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.


Assuntos
Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Animais , Atlas como Assunto , Callithrix/genética , Epigênese Genética , Epigenômica , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Perfilação da Expressão Gênica , Glutamatos/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Filogenia , Especificidade da Espécie , Transcriptoma
5.
Nature ; 598(7879): 103-110, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616066

RESUMO

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Assuntos
Epigenômica , Perfilação da Expressão Gênica , Córtex Motor/citologia , Neurônios/classificação , Análise de Célula Única , Transcriptoma , Animais , Atlas como Assunto , Conjuntos de Dados como Assunto , Epigênese Genética , Feminino , Masculino , Camundongos , Córtex Motor/anatomia & histologia , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Reprodutibilidade dos Testes
7.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948843

RESUMO

The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.

8.
Science ; 382(6667): eade9516, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824638

RESUMO

The cognitive abilities of humans are distinctive among primates, but their molecular and cellular substrates are poorly understood. We used comparative single-nucleus transcriptomics to analyze samples of the middle temporal gyrus (MTG) from adult humans, chimpanzees, gorillas, rhesus macaques, and common marmosets to understand human-specific features of the neocortex. Human, chimpanzee, and gorilla MTG showed highly similar cell-type composition and laminar organization as well as a large shift in proportions of deep-layer intratelencephalic-projecting neurons compared with macaque and marmoset MTG. Microglia, astrocytes, and oligodendrocytes had more-divergent expression across species compared with neurons or oligodendrocyte precursor cells, and neuronal expression diverged more rapidly on the human lineage. Only a few hundred genes showed human-specific patterning, suggesting that relatively few cellular and molecular changes distinctively define adult human cortical structure.


Assuntos
Cognição , Hominidae , Neocórtex , Lobo Temporal , Animais , Humanos , Perfilação da Expressão Gênica , Gorilla gorilla/genética , Hominidae/genética , Hominidae/fisiologia , Macaca mulatta/genética , Pan troglodytes/genética , Filogenia , Transcriptoma , Neocórtex/fisiologia , Especificidade da Espécie , Lobo Temporal/fisiologia
9.
Science ; 382(6667): eadf6812, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824655

RESUMO

Variation in cytoarchitecture is the basis for the histological definition of cortical areas. We used single cell transcriptomics and performed cellular characterization of the human cortex to better understand cortical areal specialization. Single-nucleus RNA-sequencing of 8 areas spanning cortical structural variation showed a highly consistent cellular makeup for 24 cell subclasses. However, proportions of excitatory neuron subclasses varied substantially, likely reflecting differences in connectivity across primary sensorimotor and association cortices. Laminar organization of astrocytes and oligodendrocytes also differed across areas. Primary visual cortex showed characteristic organization with major changes in the excitatory to inhibitory neuron ratio, expansion of layer 4 excitatory neurons, and specialized inhibitory neurons. These results lay the groundwork for a refined cellular and molecular characterization of human cortical cytoarchitecture and areal specialization.


Assuntos
Neocórtex , Humanos , Neocórtex/metabolismo , Neocórtex/ultraestrutura , Neurônios/classificação , Neurônios/metabolismo , Transcriptoma , Análise da Expressão Gênica de Célula Única , Filogenia
10.
Science ; 382(6667): eadf0805, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824667

RESUMO

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Assuntos
Neocórtex , Animais , Humanos , Camundongos , Axônios/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , Transcriptoma
11.
Science ; 382(6667): eadf6484, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824669

RESUMO

Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.


Assuntos
Neurônios GABAérgicos , Interneurônios , Neocórtex , Animais , Humanos , Camundongos , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Técnicas de Patch-Clamp
12.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37034735

RESUMO

The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.

13.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790503

RESUMO

Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.

14.
Res Sq ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292694

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.

15.
Science ; 375(6585): eabj5861, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271334

RESUMO

We present a unique, extensive, and open synaptic physiology analysis platform and dataset. Through its application, we reveal principles that relate cell type to synaptic properties and intralaminar circuit organization in the mouse and human cortex. The dynamics of excitatory synapses align with the postsynaptic cell subclass, whereas inhibitory synapse dynamics partly align with presynaptic cell subclass but with considerable overlap. Synaptic properties are heterogeneous in most subclass-to-subclass connections. The two main axes of heterogeneity are strength and variability. Cell subclasses divide along the variability axis, whereas the strength axis accounts for substantial heterogeneity within the subclass. In the human cortex, excitatory-to-excitatory synaptic dynamics are distinct from those in the mouse cortex and vary with depth across layers 2 and 3.


Assuntos
Neocórtex/fisiologia , Vias Neurais , Neurônios/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Adulto , Animais , Conjuntos de Dados como Assunto , Potenciais Pós-Sinápticos Excitadores , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos , Camundongos Transgênicos , Modelos Neurológicos , Neocórtex/citologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA