Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Microsc ; 284(3): 214-232, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34333776

RESUMO

Active virosomes (AVs) are derivatives of viruses, broadly similar to 'parent' pathogens, with an outer envelope that contains a bespoke genome coding for four to five viral proteins capable of eliciting an antigenic response. AVs are essentially novel vaccine formulations that present on their surface selected viral proteins as antigens. Once administered, they elicit an initial 'anti-viral' immune response. AVs are also internalised by host cells where their cargo viral genes are used to express viral antigen(s) intracellularly. These can then be transported to the host cell surface resulting in a second wave of antigen exposure and a more potent immuno-stimulation. A new 3D correlative microscopy approach is used here to provide a robust analytical method for characterisation of Zika- and Chikungunya-derivatised AV populations including vesicle size distribution and variations in antigen loading. Manufactured batches were compared to assess the extent and nature of batch-to-batch variations. We also show preliminary results that verify antigen expression on the surface of host cells. We present here a reliable and efficient high-resolution 3D imaging regime that allows the evaluation of the microstructure and biochemistry of novel vaccine formulations such as AVs.


A novel combination of microscopies involving X-ray and laser light has been developed at the correlative cryo-imaging beamline B24 of the UK synchrotron which can be used to analyse across- and within-batch variability of active virosome vaccine formulations. We use 3D fluorescence imaging to localise viral components within vaccine vesicles and soft X-ray tomography to characterise sample variability and impact upon delivery to cells. Moreover, we offer the next step in automation of data processing and evaluation to further enable rapid assessment of exosome-based vaccines. Active virosome vaccines are suspensions of membrane-bounded vesicles that carry antigens and genetic material from select viral pathogens. These elicit both an initial immune response through their introduction and a subsequent sustained antigenic potential via gene expression in host cells. In this case, as in all novel vaccine formulations, rapid assessment and batch standardisation are of paramount importance for the medical community and the methods described here provide a robust way of quick and efficient assessment and validation of formulations during research and development and at the production stages.


Assuntos
Vacinas , Proteínas Virais/química , Proteínas Virais/genética , Infecção por Zika virus , Zika virus , Humanos , Microscopia de Fluorescência , Temperatura , Tomografia por Raios X , Desenvolvimento de Vacinas , Proteínas Virais/metabolismo , Virossomos
2.
PLoS Biol ; 14(3): e1002418, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27011302

RESUMO

There is no unified place where genomics researchers can search through all available raw genomic data in a way similar to OMIM for genes or Uniprot for proteins. With the recent increase in the amount of genomic data that is being produced and the ever-growing promises of precision medicine, this is becoming more and more of a problem. DNAdigest is a charity working to promote efficient sharing of human genomic data to improve the outcome of genomic research and diagnostics for the benefit of patients. Repositive, a social enterprise spin-out of DNAdigest, is building an online platform that indexes genomic data stored in repositories and thus enables researchers to search for and access a range of human genomic data sources through a single, easy-to-use interface, free of charge.


Assuntos
Bases de Dados Genéticas , Genômica , Disseminação de Informação
3.
Artigo em Inglês | MEDLINE | ID: mdl-18001902

RESUMO

There is an unmet medical need for a more reliable and earlier assessment of patients suspected of having a deep vein thrombosis. We describe a novel approach which is developing a highly reliable, accurate, portable and handheld prototype medical diagnostic device to improve radically the speed, accuracy and reliability with which DVT and related blood clotting conditions can be assessed. The device will measure whole blood concentration of D-dimer, a recognized biomarker of increased blood clotting activity, and through innovation in the development of a novel detection, measurement and reporting system, will offer the opportunity to use the test in the point of care setting. The device combines innovation in antibody bio-engineering for high specificity immunoassay-based diagnostics and nano/micro engineered impedimetric analysis electrodes incorporating a biocompatible polymer substrate with development of a disposable microfluidic manifold specifically enabling diagnostics at the point-of-first-contact.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/análise , Imunoensaio/métodos , Trombose Venosa/sangue , Especificidade de Anticorpos , Materiais Biocompatíveis/química , Biomarcadores/sangue , Impedância Elétrica , Humanos , Imunoensaio/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Trombose Venosa/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA