Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Methods ; 21(5): 809-813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605111

RESUMO

Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.


Assuntos
Computação em Nuvem , Neurociências , Neurociências/métodos , Humanos , Neuroimagem/métodos , Reprodutibilidade dos Testes , Software , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
3.
PLoS One ; 19(1): e0295069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295031

RESUMO

CONTEXT: An existing major challenge in Parkinson's disease (PD) research is the identification of biomarkers of disease progression. While magnetic resonance imaging is a potential source of PD biomarkers, none of the magnetic resonance imaging measures of PD are robust enough to warrant their adoption in clinical research. This study is part of a project that aims to replicate 11 PD studies reviewed in a recent survey (JAMA neurology, 78(10) 2021) to investigate the robustness of PD neuroimaging findings to data and analytical variations. OBJECTIVE: This study attempts to replicate the results in Hanganu et al. (Brain, 137(4) 2014) using data from the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using 25 PD subjects and 18 healthy controls, we analyzed the rate of change of cortical thickness and of the volume of subcortical structures, and we measured the relationship between structural changes and cognitive decline. We compared our findings to the results in the original study. RESULTS: (1) Similarly to the original study, PD patients with mild cognitive impairment (MCI) exhibited increased cortical thinning over time compared to patients without MCI in the right middle temporal gyrus, insula, and precuneus. (2) The rate of cortical thinning in the left inferior temporal and precentral gyri in PD patients correlated with the change in cognitive performance. (3) There were no group differences in the change of subcortical volumes. (4) We did not find a relationship between the change in subcortical volumes and the change in cognitive performance. CONCLUSION: Despite important differences in the dataset used in this replication study, and despite differences in sample size, we were able to partially replicate the original results. We produced a publicly available reproducible notebook allowing researchers to further investigate the reproducibility of the results in Hanganu et al. (2014) when more data is added to PPMI.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Córtex Cerebral/patologia , Afinamento Cortical Cerebral/patologia , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Biomarcadores
4.
Front Neurosci ; 17: 1076824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214404

RESUMO

Background: A variety of quality control (QC) approaches are employed in resting-state functional magnetic resonance imaging (rs-fMRI) to determine data quality and ultimately inclusion or exclusion of a fMRI data set in group analysis. Reliability of rs-fMRI data can be improved by censoring or "scrubbing" volumes affected by motion. While censoring preserves the integrity of participant-level data, including excessively censored data sets in group analyses may add noise. Quantitative motion-related metrics are frequently reported in the literature; however, qualitative visual inspection can sometimes catch errors or other issues that may be missed by quantitative metrics alone. In this paper, we describe our methods for performing QC of rs-fMRI data using software-generated quantitative and qualitative output and trained visual inspection. Results: The data provided for this QC paper had relatively low motion-censoring, thus quantitative QC resulted in no exclusions. Qualitative checks of the data resulted in limited exclusions due to potential incidental findings and failed pre-processing scripts. Conclusion: Visual inspection in addition to the review of quantitative QC metrics is an important component to ensure high quality and accuracy in rs-fMRI data analysis.

5.
ArXiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37332566

RESUMO

Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.

6.
Commun Biol ; 4(1): 943, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354185

RESUMO

Multiple human behaviors improve early in life, peaking in young adulthood, and declining thereafter. Several properties of brain structure and function progress similarly across the lifespan. Cognitive and neuroscience research has approached aging primarily using associations between a few behaviors, brain functions, and structures. Because of this, the multivariate, global factors relating brain and behavior across the lifespan are not well understood. We investigated the global patterns of associations between 334 behavioral and clinical measures and 376 brain structural connections in 594 individuals across the lifespan. A single-axis associated changes in multiple behavioral domains and brain structural connections (r = 0.5808). Individual variability within the single association axis well predicted the age of the subject (r = 0.6275). Representational similarity analysis evidenced global patterns of interactions across multiple brain network systems and behavioral domains. Results show that global processes of human aging can be well captured by a multivariate data fusion approach.


Assuntos
Envelhecimento , Comportamento , Mapeamento Encefálico , Encéfalo/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem
7.
Sci Data ; 8(1): 56, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574337

RESUMO

We describe a dataset of processed data with associated reproducible preprocessing pipeline collected from two collegiate athlete groups and one non-athlete group. The dataset shares minimally processed diffusion-weighted magnetic resonance imaging (dMRI) data, three models of the diffusion signal in the voxel, full-brain tractograms, segmentation of the major white matter tracts as well as structural connectivity matrices. There is currently a paucity of similar datasets openly shared. Furthermore, major challenges are associated with collecting this type of data. The data and derivatives shared here can be used as a reference to study the effects of long-term exposure to collegiate athletics, such as the effects of repetitive head impacts. We use advanced anatomical and dMRI data processing methods publicly available as reproducible web services at brainlife.io.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Atletas , Conectoma , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Adulto Jovem
8.
Sci Rep ; 11(1): 6866, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767217

RESUMO

The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test-retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.


Assuntos
Cegueira/fisiopatologia , Glaucoma/fisiopatologia , Substância Cinzenta/patologia , Trato Óptico/patologia , Vias Visuais/patologia , Substância Branca/patologia , Anisotropia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Sci Data ; 8(1): 308, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836950

RESUMO

We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging data from human individuals with albinism and achiasma. This repository can be used as a test-bed to develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as to investigate the properties of the human visual system in individuals with congenital abnormalities. The MRI data is provided together with tools and files allowing for its preprocessing and analysis, along with the data derivatives such as manually curated masks and regions of interest for performing tractography.


Assuntos
Albinismo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Quiasma Óptico/anormalidades , Anormalidades Congênitas/diagnóstico por imagem , Humanos , Quiasma Óptico/diagnóstico por imagem
10.
Elife ; 82019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30601116

RESUMO

Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.


Assuntos
Atenção , Lobo Temporal/fisiologia , Substância Branca/fisiologia , Animais , Mapeamento Encefálico , Comunicação , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Movimento (Física) , Vias Neurais , Lobo Temporal/anatomia & histologia , Lobo Temporal/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem
11.
Brain Struct Funct ; 224(8): 2631-2660, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31342157

RESUMO

Historically, the primary focus of studies of human white matter tracts has been on large tracts that connect anterior-to-posterior cortical regions. These include the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF). Recently, more refined and well-understood tractography methods have facilitated the characterization of several tracts in the posterior of the human brain that connect dorsal-to-ventral cortical regions. These include the vertical occipital fasciculus (VOF), the posterior arcuate fasciculus (pArc), the temporo-parietal connection (TP-SPL), and the middle longitudinal fasciculus (MdLF). The addition of these dorso-ventral connective tracts to our standard picture of white matter architecture results in a more complicated pattern of white matter connectivity than previously considered. Dorso-ventral connective tracts may play a role in transferring information from superior horizontal tracts, such as the SLF, to inferior horizontal tracts, such as the IFOF and ILF. We present a full anatomical delineation of these major dorso-ventral connective white matter tracts (the VOF, pArc, TP-SPL, and MdLF). We show their spatial layout and cortical termination mappings in relation to the more established horizontal tracts (SLF, IFOF, ILF, and Arc) and consider standard values for quantitative features associated with the aforementioned tracts. We hope to facilitate further study on these tracts and their relations. To this end, we also share links to automated code that segments these tracts, thereby providing a standard approach to obtaining these tracts for subsequent analysis. We developed open source software to allow reproducible segmentation of the tracts: https://github.com/brainlife/Vertical_Tracts . Finally, we make the segmentation method available as an open cloud service on the data and analyses sharing platform brainlife.io. Investigators will be able to access these services and upload their data to segment these tracts.


Assuntos
Encéfalo/anatomia & histologia , Substância Branca/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Software , Substância Branca/diagnóstico por imagem
12.
Sci Data ; 6(1): 69, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123325

RESUMO

We describe the Open Diffusion Data Derivatives (O3D) repository: an integrated collection of preserved brain data derivatives and processing pipelines, published together using a single digital-object-identifier. The data derivatives were generated using modern diffusion-weighted magnetic resonance imaging data (dMRI) with diverse properties of resolution and signal-to-noise ratio. In addition to the data, we publish all processing pipelines (also referred to as open cloud services). The pipelines utilize modern methods for neuroimaging data processing (diffusion-signal modelling, fiber tracking, tractography evaluation, white matter segmentation, and structural connectome construction). The O3D open services can allow cognitive and clinical neuroscientists to run the connectome mapping algorithms on new, user-uploaded, data. Open source code implementing all O3D services is also provided to allow computational and computer scientists to reuse and extend the processing methods. Publishing both data-derivatives and integrated processing pipeline promotes practices for scientific reproducibility and data upcycling by providing open access to the research assets for utilization by multiple scientific communities.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Imagem de Difusão por Ressonância Magnética , Algoritmos , Humanos , Neuroimagem , Software , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA