Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Proc Natl Acad Sci U S A ; 117(11): 5694-5705, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32094168

RESUMO

Blooms of Zygnematophycean "glacier algae" lower the bare ice albedo of the Greenland Ice Sheet (GrIS), amplifying summer energy absorption at the ice surface and enhancing meltwater runoff from the largest cryospheric contributor to contemporary sea-level rise. Here, we provide a step change in current understanding of algal-driven ice sheet darkening through quantification of the photophysiological mechanisms that allow glacier algae to thrive on and darken the bare ice surface. Significant secondary phenolic pigmentation (11 times the cellular content of chlorophyll a) enables glacier algae to tolerate extreme irradiance (up to ∼4,000 µmol photons⋅m-2⋅s-1) while simultaneously repurposing captured ultraviolet and short-wave radiation for melt generation. Total cellular energy absorption is increased 50-fold by phenolic pigmentation, while glacier algal chloroplasts positioned beneath shading pigments remain low-light-adapted (Ek ∼46 µmol photons⋅m-2⋅s-1) and dependent upon typical nonphotochemical quenching mechanisms for photoregulation. On the GrIS, glacier algae direct only ∼1 to 2.4% of incident energy to photochemistry versus 48 to 65% to ice surface melting, contributing an additional ∼1.86 cm water equivalent surface melt per day in patches of high algal abundance (∼104 cells⋅mL-1). At the regional scale, surface darkening is driven by the direct and indirect impacts of glacier algae on ice albedo, with a significant negative relationship between broadband albedo (Moderate Resolution Imaging Spectroradiometer [MODIS]) and glacier algal biomass (R2 = 0.75, n = 149), indicating that up to 75% of the variability in albedo across the southwestern GrIS may be attributable to the presence of glacier algae.


Assuntos
Camada de Gelo , Microalgas/fisiologia , Elevação do Nível do Mar , Retroalimentação Fisiológica , Groenlândia , Microalgas/metabolismo , Fotossíntese
3.
Environ Health ; 21(1): 122, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464683

RESUMO

BACKGROUND: Air quality is a major public health threat linked to poor birth outcomes, respiratory and cardiovascular disease, and premature mortality. Deprived groups and children are disproportionately affected. Bradford will implement a Clean Air Zone (CAZ) as part of the Bradford Clean Air Plan (B-CAP) in 2022 to reduce pollution, providing a natural experiment. The aim of the current study is to evaluate the impact of the B-CAP on health outcomes and air quality, inequalities and explore value for money. An embedded process and implementation evaluation will also explore barriers and facilitators to implementation, impact on attitudes and behaviours, and any adverse consequences. METHODS: The study is split into 4 work packages (WP). WP1A: 20 interviews with decision makers, 20 interviews with key stakeholders; 10 public focus groups and documentary analysis of key reports will assess implementation barriers, acceptability and adverse or unanticipated consequences at 1 year post-implementation (defined as point at which charging CAZ goes 'live'). WP1B: A population survey (n = 2000) will assess travel behaviour and attitudes at baseline and change at 1 year post-implementation). WP2: Routine air quality measurements will be supplemented with data from mobile pollution sensors in 12 schools collected by N = 240 pupil citizen scientists (4 within, 4 bordering and 4 distal to CAZ boundary). Pupils will carry sensors over four monitoring periods over a 12 month period (two pre, and two post-implementation). We will explore whether reductions in pollution vary by CAZ proximity. WP3A: We will conduct a quasi-experimental interrupted time series analysis using a longitudinal routine health dataset of > 530,000 Bradford residents comparing trends (3 years prior vs 3 years post) in respiratory health (assessed via emergency/GP attendances. WP3B: We will use the richly-characterised Born in Bradford cohort (13,500 children) to explore health inequalities in respiratory health using detailed socio-economic data. WP4: will entail a multi-sectoral health economic evaluation to determine value for money of the B-CAP. DISCUSSION: This will be first comprehensive quasi-experimental evaluation of a city-wide policy intervention to improve air quality. The findings will be of value for other areas implementing this type of approach. TRIAL REGISTRATION: ISRCTN67530835 https://doi.org/10.1186/ISRCTN67530835.


Assuntos
Poluição do Ar , Conservação dos Recursos Naturais , Saúde Pública , Criança , Humanos , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Reino Unido , Saúde Pública/instrumentação , Saúde Pública/métodos , Entrevistas como Assunto , Conservação dos Recursos Naturais/métodos
4.
Acta Neurochir (Wien) ; 163(7): 1819-1827, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031774

RESUMO

BACKGROUND: Aerosol is a health risk to theatre staff. This laboratory study quantifies the reduction in particulate matter aerosol concentrations produced by electrocautery and drilling when using mitigation strategies such as irrigation, respirator filtration and suction in a lab environment to prepare for future work under live OR conditions. METHODS: We combined one aerosol-generating procedure (monopolar cutting or coagulating diathermy or high-speed diamond- or steel-tipped drilling of cadaveric porcine tissue) with one or multiple mitigation strategies (instrument irrigation, plume suction and filtration using an FFP3 respirator filter) and using an optical particle counter to measure particulate matter aerosol size and concentrations. RESULTS: Significant aerosol concentrations were observed during all aerosol-generating procedures with concentrations exceeding 3 × 106 particles per 100 ml. Considerable reductions in concentrations were observed with mitigation. In drilling, suction, FFP3 filtration and wash alone respectively reduced aerosol by 19.3-31.6%, 65.1-70.8% and 97.2 to > 99.9%. The greatest reduction (97.38 to > 99.9%) was observed when combining irrigation and filtration. Coagulating diathermy reduced concentrations by 88.0-96.6% relative to cutting, but produced larger particles. Suction alone, and suction with filtration reduced aerosol concentration by 41.0-49.6% and 88.9-97.4% respectively. No tested mitigation strategies returned aerosol concentrations to baseline. CONCLUSION: Aerosol concentrations are significantly reduced through the combined use of filtration, suction and irrigation. Further research is required to characterise aerosol concentrations in the live OR and to find acceptable exposure limits, and in their absence, to find methods to further reduce exposure to theatre staff.


Assuntos
Material Particulado , Aerossóis/análise , Animais , Sucção , Suínos , Ventiladores Mecânicos
5.
Nature ; 453(7199): 1232-5, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18580948

RESUMO

Increasing tropospheric ozone levels over the past 150 years have led to a significant climate perturbation; the prediction of future trends in tropospheric ozone will require a full understanding of both its precursor emissions and its destruction processes. A large proportion of tropospheric ozone loss occurs in the tropical marine boundary layer and is thought to be driven primarily by high ozone photolysis rates in the presence of high concentrations of water vapour. A further reduction in the tropospheric ozone burden through bromine and iodine emitted from open-ocean marine sources has been postulated by numerical models, but thus far has not been verified by observations. Here we report eight months of spectroscopic measurements at the Cape Verde Observatory indicative of the ubiquitous daytime presence of bromine monoxide and iodine monoxide in the tropical marine boundary layer. A year-round data set of co-located in situ surface trace gas measurements made in conjunction with low-level aircraft observations shows that the mean daily observed ozone loss is approximately 50 per cent greater than that simulated by a global chemistry model using a classical photochemistry scheme that excludes halogen chemistry. We perform box model calculations that indicate that the observed halogen concentrations induce the extra ozone loss required for the models to match observations. Our results show that halogen chemistry has a significant and extensive influence on photochemical ozone loss in the tropical Atlantic Ocean boundary layer. The omission of halogen sources and their chemistry in atmospheric models may lead to significant errors in calculations of global ozone budgets, tropospheric oxidizing capacity and methane oxidation rates, both historically and in the future.


Assuntos
Atmosfera/química , Halogênios/química , Ozônio/química , Água do Mar/química , Clima Tropical , África Ocidental , Oceano Atlântico , Eucariotos/metabolismo , Geografia , Biologia Marinha , Metano/química , Ozônio/análise , Ozônio/efeitos da radiação , Estações do Ano , Água do Mar/microbiologia , Temperatura
6.
Sci Adv ; 9(33): eadg3708, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585539

RESUMO

Ice-nucleating particles (INPs) influence cloud radiative properties and climate; however, INP sources and concentrations are poorly constrained, particularly in high-latitude regions. Southern Alaska is a known source of high-latitude dust, but its contribution to atmospheric mineral dust and INP concentrations has not been quantified. We show that glacial dust collected in southern Alaska is an effective ice-nucleating material under conditions relevant for mixed-phase clouds and is more active than low-latitude dust because of a biological component that enhances its activity. We use dispersion modeling to show that this source contributes to the regional INP population and that the dust emitted is transported over a broad area of North America, reaching altitudes where it could cause cloud glaciation. Our results highlight the importance of quantifying emissions and ice-nucleating characteristics of high-latitude dusts and suggest that the ice-nucleating ability of emitted dust in these regions should be represented in models using different parametrizations to low-latitude dust.

7.
Nat Commun ; 12(1): 570, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495440

RESUMO

Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet's southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.


Assuntos
Eutrofização/fisiologia , Camada de Gelo , Microalgas/crescimento & desenvolvimento , Minerais/metabolismo , Fósforo/metabolismo , Biomassa , Ecossistema , Congelamento , Geografia , Aquecimento Global , Groenlândia , Gelo , Microalgas/citologia , Microalgas/ultraestrutura , Microscopia Eletrônica de Varredura , Estações do Ano
8.
Geohealth ; 5(10): e2021GH000454, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34723045

RESUMO

The Australian 2019/2020 bushfires were unprecedented in their extent and intensity, causing a catastrophic loss of habitat, human and animal life across eastern-Australia. We use a regional air quality model to assess the impact of the bushfires on particulate matter with a diameter less than 2.5 µm (PM2.5) concentrations and the associated health impact from short-term population exposure to bushfire PM2.5. The mean population Air Quality Index (AQI) exposure between September and February in the fires and no fires simulations indicates an additional ∼437,000 people were exposed to "Poor" or worse AQI levels due to the fires. The AQ impact was concentrated in the cities of Sydney, Newcastle-Maitland, Canberra-Queanbeyan and Melbourne. Between October and February 171 (95% CI: 66-291) deaths were brought forward due to short-term exposure to bushfire PM2.5. The health burden was largest in New South Wales (NSW) (109 (95% CI: 41-176) deaths brought forward), Queensland (15 (95% CI: 5-24)), and Victoria (35 (95% CI: 13-56)). This represents 38%, 13% and 30% of the total deaths brought forward by short-term exposure to all PM2.5. At a city-level 65 (95% CI: 24-105), 23 (95% CI: 9-38) and 9 (95% CI: 4-14) deaths were brought forward from short-term exposure to bushfire PM2.5, accounting for 36%, 20%, and 64% of the total deaths brought forward from all PM2.5. Thus, the bushfires caused substantial AQ and health impacts across eastern-Australia. Climate change is projected to increase bushfire risk, therefore future fire management policies should consider this.

9.
Microb Genom ; 4(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29547098

RESUMO

The Arctic is being disproportionally affected by climate change compared with other geographic locations, and is currently experiencing unprecedented melt rates. The Greenland Ice Sheet (GrIS) can be regarded as the largest supraglacial ecosystem on Earth, and ice algae are the dominant primary producers on bare ice surfaces throughout the course of a melt season. Ice-algal-derived pigments cause a darkening of the ice surface, which in turn decreases albedo and increases melt rates. The important role of ice algae in changing melt rates has only recently been recognized, and we currently know little about their community compositions and functions. Here, we present the first analysis of ice algal communities across a 100 km transect on the GrIS by high-throughput sequencing and subsequent oligotyping of the most abundant taxa. Our data reveal an extremely low algal diversity with Ancylonema nordenskiöldii and a Mesotaenium species being by far the dominant taxa at all sites. We employed an oligotyping approach and revealed a hidden diversity not detectable by conventional clustering of operational taxonomic units and taxonomic classification. Oligotypes of the dominant taxa exhibit a site-specific distribution, which may be linked to differences in temperatures and subsequently the extent of the melting. Our results help to better understand the distribution patterns of ice algal communities that play a crucial role in the GrIS ecosystem.


Assuntos
Alga Marinha/classificação , Zygnematales/classificação , Regiões Árticas , Biodiversidade , Clorofíceas/classificação , Clorofíceas/crescimento & desenvolvimento , Temperatura Baixa , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Ecossistema , Congelamento , Groenlândia , Camada de Gelo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/isolamento & purificação , Estações do Ano , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/isolamento & purificação , Análise de Sequência de DNA , Zygnematales/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA