Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(3): 1136-1155, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38038252

RESUMO

Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.


Assuntos
Centrômero , Quebras de DNA de Cadeia Dupla , Chaperonas Moleculares , Proteínas Nucleares , Estruturas R-Loop , Proteína Nuclear Ligada ao X , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Cromatina , Proteínas Correpressoras/metabolismo , DNA , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
2.
Nature ; 556(7699): 113-117, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29590092

RESUMO

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Assuntos
Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Fator 2 Relacionado a NF-E2/metabolismo , Succinatos/metabolismo , Alquilação , Animais , Carboxiliases , Bovinos , Cisteína/química , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Hidroliases/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas/metabolismo , Ratos , Ratos Wistar , Succinatos/química
3.
Proc Natl Acad Sci U S A ; 116(33): 16234-16239, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371500

RESUMO

Understanding the approach to faulting in continental rocks is critical for identifying processes leading to fracturing in geomaterials and the preparation process of large earthquakes. In situ dynamic X-ray imaging and digital volume correlation analysis of a crystalline rock core, under a constant confining pressure of 25 MPa, are used to elucidate the initiation, growth, and coalescence of microfractures leading to macroscopic failure as the axial compressive stress is increased. Following an initial elastic deformation, microfractures develop in the solid, and with increasing differential stress, the damage pervades the rock volume. The creation of new microfractures is accompanied by propagation, opening, and closing of existing microfractures, leading to the emergence of damage indices that increase as powers of the differential stress when approaching failure. A strong spatial correlation is observed between microscale zones with large positive and negative volumetric strains, microscale zones with shears of opposite senses, and microscale zones with high volumetric and shear strains. These correlations are attributed to microfracture interactions mediated by the heterogeneous stress field. The rock fails macroscopically as the microfractures coalesce and form a geometrically complex 3D volume that spans the rock sample. At the onset of failure, more than 70% of the damage volume is connected in a large fracture cluster that evolves into a fault zone. In the context of crustal faulting dynamics, these results suggest that evolving rock damage around existing locked or future main faults influences the localization process that culminates in large brittle rupture events.

4.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562959

RESUMO

The ß-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) is an extensively studied therapeutic target for Alzheimer's disease (AD), owing to its role in the production of neurotoxic amyloid beta (Aß) peptides. However, despite numerous BACE1 inhibitors entering clinical trials, none have successfully improved AD pathogenesis, despite effectively lowering Aß concentrations. This can, in part, be attributed to an incomplete understanding of BACE1, including its physiological functions and substrate specificity. We propose that BACE1 has additional important physiological functions, mediated through substrates still to be identified. Thus, to address this, we computationally analysed a list of 533 BACE1 dependent proteins, identified from the literature, for potential BACE1 substrates, and compared them against proteins differentially expressed in AD. We identified 15 novel BACE1 substrates that were specifically altered in AD. To confirm our analysis, we validated Protein tyrosine phosphatase receptor type D (PTPRD) and Netrin receptor DCC (DCC) using Western blotting. These findings shed light on the BACE1 inhibitor failings and could enable the design of substrate-specific inhibitors to target alternative BACE1 substrates. Furthermore, it gives us a greater understanding of the roles of BACE1 and its dysfunction in AD.


Assuntos
Doença de Alzheimer , Receptor DCC , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Biologia Computacional , Receptor DCC/genética , Receptor DCC/metabolismo , Mineração de Dados , Humanos , Monoéster Fosfórico Hidrolases , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
5.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712883

RESUMO

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Assuntos
Doenças de Pequenos Vasos Cerebrais/etiologia , Pesquisa Translacional Biomédica , Animais , Humanos
6.
BMC Vet Res ; 13(1): 131, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28499434

RESUMO

BACKGROUND: The European badger is an important wildlife reservoir of Mycobacterium bovis implicated in the spread of bovine tuberculosis in the United Kingdom and Ireland. Infected badgers are known to shed M. bovis in their urine and faeces, which may contaminate the environment. To aid bovine tuberculosis control efforts novel diagnostic tests for detecting infected and shedding badgers are needed. We proposed development of a novel, rapid immunochromatographic lateral flow device (LFD) as a non-invasive test to detect M. bovis cells in badger faeces. Its application in combination with immunomagnetic separation (IMS) to detect Mycobacterium bovis cells in badger faeces is reported here. RESULTS: A novel prototype LFD for M. bovis cells was successfully developed, with unique specificity for M. bovis and a limit of detection 50% (LOD50%) of 1.7 × 104 M. bovis cells/ml. When IMS was employed to selectively capture and concentrate M. bovis cells from badger faeces prior to LFD testing, the LOD50% of the IMS-LFD assay was 2.8 × 105 M. bovis cells/ml faecal homogenate. Faeces samples collected from latrines at badger setts in a region of endemic bovine tuberculosis infection were tested; 78 (18%) of 441 samples tested IMS-LFD assay positive, whereas 140 (32%) tested IMS-qPCR positive (Kappa agreement -0.009 ± 0.044, p = 0.838). Subsequently, when 130 faeces samples from live captured, or captive, badgers of known infection status (on the basis of StatPak, interferon-γ and/or culture results) were tested, the IMS-LFD assay had higher relative diagnostic specificity (Sp 0.926), but poorer relative diagnostic sensitivity (Se 0.081), than IMS-qPCR (Sp 0.706, Se 0.581) and IMS-culture (Sp 0.794, Se 0.436). CONCLUSIONS: The novel IMS-LFD assay, although very specific for M. bovis, has low analytical sensitivity (indicated by the LOD50%) and would only detect badgers shedding high numbers of M. bovis (>104-5 cells/g) in their faeces. The novel LFD would, therefore, have limited value as a non-invasive test for badger TB surveillance purposes but it may have value for alternative veterinary diagnostic applications.


Assuntos
Cromatografia de Afinidade/veterinária , Fezes/microbiologia , Separação Imunomagnética/veterinária , Mustelidae/microbiologia , Mycobacterium bovis/isolamento & purificação , Animais , Anticorpos Antibacterianos/análise , Separação Imunomagnética/métodos , Sensibilidade e Especificidade
7.
J Autoimmun ; 60: 59-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25975491

RESUMO

Rheumatoid arthritis (RA) remains a debilitating autoimmune condition as many patients are refractory to existing conventional and biologic therapies, and hence successful development of novel treatments remains a critical requirement. Towards this, we now describe a synthetic drug-like small molecule analogue, SMA-12b, of an immunomodulatory parasitic worm product, ES-62, which acts both prophylactically and therapeutically against collagen-induced arthritis (CIA) in mice. Mechanistic analysis revealed that SMA-12b modifies the expression of a number of inflammatory response genes, particularly those associated with the inflammasome in mouse bone marrow-derived macrophages and indeed IL-1ß was the most down-regulated gene. Consistent with this, IL-1ß was significantly reduced in the joints of mice with CIA treated with SMA-12b. SMA-12b also increased the expression of a number of genes associated with anti-oxidant responses that are controlled by the transcription factor NRF2 and critically, was unable to inhibit expression of IL-1ß by macrophages derived from the bone marrow of NRF2(-/-) mice. Collectively, these data suggest that SMA-12b could provide the basis of an entirely novel approach to fulfilling the urgent need for new treatments for RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Proteínas de Helminto/farmacologia , Interleucina-1beta/biossíntese , Fator 2 Relacionado a NF-E2/genética , Acanthocheilonema/metabolismo , Animais , Artrite Experimental/prevenção & controle , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/prevenção & controle , Colágeno , Gerbillinae , Inflamassomos/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Articulações/imunologia , Articulações/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/imunologia
8.
Diabetologia ; 57(8): 1684-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24849570

RESUMO

AIMS/HYPOTHESIS: Impaired glucose uptake in skeletal muscle is an important contributor to glucose intolerance in type 2 diabetes. The aspartate protease, beta-site APP-cleaving enzyme 1 (BACE1), a critical regulator of amyloid precursor protein (APP) processing, modulates in vivo glucose disposal and insulin sensitivity in mice. Insulin-independent pathways to stimulate glucose uptake and GLUT4 translocation may offer alternative therapeutic avenues for the treatment of diabetes. We therefore addressed whether BACE1 activity, via APP processing, in skeletal muscle modifies glucose uptake and oxidation independently of insulin. METHODS: Skeletal muscle cell lines were used to investigate the effects of BACE1 and α-secretase inhibition and BACE1 and APP overexpression on glucose uptake, GLUT4 cell surface translocation, glucose oxidation and cellular respiration. RESULTS: In the absence of insulin, reduction of BACE1 activity increased glucose uptake and oxidation, GLUT4myc cell surface translocation, and basal rate of oxygen consumption. In contrast, overexpressing BACE1 in C2C12 myotubes decreased glucose uptake, glucose oxidation and oxygen consumption rate. APP overexpression increased and α-secretase inhibition decreased glucose uptake in C2C12 myotubes. The increase in glucose uptake elicited by BACE1 inhibition is dependent on phosphoinositide 3-kinase (PI3K) and mimicked by soluble APPα (sAPPα). CONCLUSIONS/INTERPRETATION: Inhibition of muscle BACE1 activity increases insulin-independent, PI3K-dependent glucose uptake and cell surface translocation of GLUT4. As APP overexpression raises basal glucose uptake, and direct application of sAPPα increases PI3K-protein kinase B signalling and glucose uptake in myotubes, we suggest that α-secretase-dependent shedding of sAPPα regulates insulin-independent glucose uptake in skeletal muscle.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Ceramidas/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ratos
9.
Cardiovasc Res ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180332

RESUMO

AIMS: Diabetes mellitus (DM) increases heart failure incidence and worsens prognosis, but its molecular basis is poorly defined in humans. We aimed to define the diabetic myocardial transcriptome and validate hits in their circulating protein form to define disease mechanisms and biomarkers. METHODS AND RESULTS: RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project was used to define differentially expressed genes (DEGs) in right atrial (RA) and left ventricular (LV) myocardium from people with versus without DM (type 1 or 2). DEGs were validated as plasma proteins in the UK Biobank cohort, searching for directionally concordant differential expression. Validated plasma proteins were characterized in UK Biobank participants, irrespective of diabetes status, using cardiac magnetic resonance imaging, incident heart failure and cardiovascular mortality.We found 32 and 32 DEGs associated with DM in the RA and LV, respectively, with no overlap between these. Plasma proteomic data was available for 12, with ERBB3, NRXN3 and HSPA2 (all LV hits) exhibiting directional concordance. Irrespective of DM status, lower circulating ERBB3 and higher HSPA2 were associated with impaired left ventricular contractility and higher LV mass. Participants in the lowest quartile of circulating ERBB3 or highest quartile of circulating HSPA2 had increased incident heart failure and cardiovascular death vs. all other quartiles. CONCLUSIONS: DM is characterized by lower Erbb3 and higher Hspa2 expression in the myocardium, with directionally concordant differences in their plasma protein concentration. These are associated with left ventricular dysfunction, incident heart failure and cardiovascular mortality.

10.
J Invest Dermatol ; 144(10): 2197-2210.e4, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38570030

RESUMO

BACE1 is well-known for its role in the development of Alzheimer's disease. Recent publications, including our own, have demonstrated a role for this enzyme in other chronic diseases. The aim of this study was to investigate the role of BACE1 in the autoimmune disease systemic sclerosis (SSc). BACE1 protein levels were elevated in the skin of patients with SSc. Inhibition of BACE1 with small-molecule inhibitors or small interfering RNA blocked SSc and fibrotic stimuli-mediated fibroblast activation. Furthermore, we show that BACE1 regulation of dermal fibroblast activation is dependent on ß-catenin and Notch signaling. The neurotropic factor brain-derived neurotrophic factor negatively regulates BACE1 expression and activity in dermal fibroblasts. Finally, sera from patients with SSc show higher ß-amyloid and lower brain-derived neurotrophic factor levels than healthy controls. The ability of BACE1 to regulate SSc fibroblast activation reveals a therapeutic target in SSc. Several BACE1 inhibitors have been shown to be safe in clinical trials for Alzheimer's disease and could be repurposed to ameliorate fibrosis progression.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Fibroblastos , Receptores Notch , Escleroderma Sistêmico , Transdução de Sinais , beta Catenina , Secretases da Proteína Precursora do Amiloide/metabolismo , Humanos , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/metabolismo , Fibroblastos/metabolismo , beta Catenina/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Receptores Notch/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Células Cultivadas , Masculino , Pele/patologia , Pele/metabolismo , Feminino
11.
Neurosignals ; 21(1-2): 28-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22456226

RESUMO

Activation of mammalian target of rapamycin 1 (mTORC1) by nutrients, insulin and leptin leads to appetite suppression (anorexia). Contrastingly, increased AMP-activated protein kinase (AMPK) activity by ghrelin promotes appetite (orexia). However, the interplay between these mechanisms remains poorly defined. The relationship between the anorexigenic hormones, insulin and leptin, and the orexigenic hormone, ghrelin, on mTORC1 signalling was examined using S6 kinase phosphorylation as a marker for changes in mTORC1 activity in mouse hypothalamic GT1-7 cells. Additionally, the contribution of AMPK and mTORC1 signalling in relation to insulin-, leptin- and ghrelin-driven alterations to mouse hypothalamic agouti-related protein (AgRP) mRNA levels was examined. Insulin and leptin increase mTORC1 activity in a phosphoinositide-3-kinase (PI3K)- and protein kinase B (PKB)-dependent manner, compared to vehicle controls, whereas increasing AMPK activity inhibits mTORC1 activity and blocks the actions of the anorexigenic hormones. Ghrelin mediates an AMPK-dependent decrease in mTORC1 activity and increases hypothalamic AgRP mRNA levels, the latter effect being prevented by insulin in an mTORC1-dependent manner. In conclusion, mTORC1 acts as an integration node in hypothalamic neurons for hormone-derived PI3K and AMPK signalling and mediates at least part of the assimilated output of anorexigenic and orexigenic hormone actions in the hypothalamus.


Assuntos
Proteína Relacionada com Agouti/biossíntese , Apetite/fisiologia , Hipotálamo/metabolismo , Complexos Multiproteicos/metabolismo , RNA Mensageiro/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anorexia/metabolismo , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL
12.
Biochem J ; 441(1): 285-96, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21880018

RESUMO

Insulin resistance and impaired glucose homoeostasis are important indicators of Type 2 diabetes and are early risk factors of AD (Alzheimer's disease). An essential feature of AD pathology is the presence of BACE1 (ß-site amyloid precursor protein-cleaving enzyme 1), which regulates production of toxic amyloid peptides. However, whether BACE1 also plays a role in glucose homoeostasis is presently unknown. We have used transgenic mice to analyse the effects of loss of BACE1 on body weight, and lipid and glucose homoeostasis. BACE1-/- mice are lean, with decreased adiposity, higher energy expenditure, and improved glucose disposal and peripheral insulin sensitivity than wild-type littermates. BACE1-/- mice are also protected from diet-induced obesity. BACE1-deficient skeletal muscle and liver exhibit improved insulin sensitivity. In a skeletal muscle cell line, BACE1 inhibition increased glucose uptake and enhanced insulin sensitivity. The loss of BACE1 is associated with increased levels of UCP1 (uncoupling protein 1) in BAT (brown adipose tissue) and UCP2 and UCP3 mRNA in skeletal muscle, indicative of increased uncoupled respiration and metabolic inefficiency. Thus BACE1 levels may play a critical role in glucose and lipid homoeostasis in conditions of chronic nutrient excess. Therefore strategies that ameliorate BACE1 activity may be important novel approaches for the treatment of diabetes.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Dieta , Gorduras na Dieta/administração & dosagem , Regulação da Expressão Gênica/fisiologia , Obesidade/metabolismo , Adiposidade , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Glicemia , Linhagem Celular , Gorduras na Dieta/efeitos adversos , Glucose/genética , Glucose/metabolismo , Resistência à Insulina , Canais Iônicos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais , Mioblastos/metabolismo , Obesidade/induzido quimicamente , Obesidade/genética , Proteína Desacopladora 1
14.
Obes Rev ; 23(7): e13430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35119166

RESUMO

ß-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the ß-secretase responsible for the production of ß-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic ß-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.


Assuntos
Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Diabetes Mellitus Tipo 2 , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Diabetes Mellitus Tipo 2/genética , Humanos , Camundongos , Obesidade/genética
15.
Methods Mol Biol ; 2441: 321-327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099748

RESUMO

The fibrin gel angiogenesis bead assay provides a controlled in vitro setting for observing endothelial angiogenic sprouting in response to modified variables. Endothelial cells are coated onto microcarriers and embedded into a fibrin clot containing necessary growth factors. Following a 24-h incubation, endothelial sprouts are imaged using a light microscope. This method is useful for rapidly and affordably investigating the effects of genetic or chemical manipulation to endothelial function.


Assuntos
Células Endoteliais , Fibrina , Bioensaio , Neovascularização Fisiológica/fisiologia
16.
PLoS One ; 17(9): e0272847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048775

RESUMO

BACKGROUND: Rapid Diagnostic Tests (RDTs) have become the cornerstone for the management of malaria in many endemic settings, but their use is constrained for several reasons: (i) persistent malaria antigen (histidine-rich protein 2; HRP2) leading to false positive test results; (ii) hrp2 deletions leading to false negative PfHRP2 results; and (iii) limited sensitivity with a detection threshold of around 100 parasites/µl blood (pLDH- and HRP2-based) leading to false negative tests. Microscopy is still the gold standard for malaria diagnosis, and allows for species determination and quantitation, but requires trained microscopists, maintained microscopes and has detection limit issues. Consequently, there is a pressing need to develop and evaluate more sensitive and accurate diagnostic tests. To address this need we have developed a direct on blood mini PCR-NALFIA test that combines the benefits of molecular biology with low infrastructural requirements and extensive training. METHODS: This is a Phase 3 diagnostic evaluation in 5 African countries. Study sites (Sudan, Ethiopia, Burkina, Kenya and Namibia) were selected to ensure wide geographical coverage of Africa and to address various malaria epidemiological contexts ranging from high transmission to near elimination settings with different clinical scenarios and diagnostic challenges. Study participants will be enrolled at the study health facilities after obtaining written informed consent. Diagnostic accuracy will be assessed following the WHO/TDR guidelines for the evaluation of diagnostics and reported according to STARD principles. Due to the lack of a 100% specific and sensitive standard diagnostic test for malaria, the sensitivity and specificity of the new test will be compared to the available diagnostic practices in place at the selected sites and to quantitative PCR as the reference test. DISCUSSION: This phase 3 study is designed to validate the clinical performance and feasibility of implementing a new diagnostic tool for the detection of malaria in real clinical settings. If successful, the proposed technology will improve the diagnosis of malaria. Enrolment started in November 2022 (Kenya) with assessment of long term outcome to be completed by 2023 at all recruitment sites. TRIAL REGISTRATION: Pan African Clinical Trial Registry (www.pactr.org) PACTR202202766889963 on 01/02/2022 and ISCRTN (www.isrctn.com/) ISRCTN13334317 on 22/02/2022.


Assuntos
Malária Falciparum , Malária , Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/métodos , Humanos , Quênia , Malária/diagnóstico , Malária/epidemiologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
17.
J Chem Phys ; 134(4): 044137, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21280717

RESUMO

Two-dimensional dendritic growth due to solute precipitation was simulated using a phase-field model reported earlier [Z. Xu and P. Meakin, J. Chem. Phys. 129, 014705 (2008)]. It was shown that diffusion-limited precipitation due to the chemical reaction at the solid-liquid interface has similarities with diffusion-limited aggregation (DLA). The diffusion-limited precipitation is attained by setting the chemical reaction rate much larger compared to the solute diffusion to eliminate the effect of the interface growth kinetics. The phase-field simulation results were in reasonable agreement with the analytical solutions. The fractal solid fingers can be formed in the diffusion-limited precipitation and have a fractal dimension measured d(f)=1.68, close to 1.64, the fractal dimensionality of large square lattice DLA clusters.


Assuntos
Fenômenos Biofísicos , Dendritos/química , Modelos Biológicos , Precipitação Química , Dendritos/fisiologia , Difusão , Soluções/química
18.
Redox Biol ; 47: 102158, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626892

RESUMO

The transcription factor Nrf2 is a stress-responsive master regulator of antioxidant, detoxification and proteostasis genes. In astrocytes, Nrf2-dependent gene expression drives cell-autonomous cytoprotection and also non-cell-autonomous protection of nearby neurons, and can ameliorate pathology in several acute and chronic neurological disorders associated with oxidative stress. However, the value of astrocytic Nrf2 as a therapeutic target depends in part on whether Nrf2 activation by disease-associated oxidative stress occludes the effect of any Nrf2-activating drug. Nrf2 activation classically involves the inhibition of interactions between Nrf2's Neh2 domain and Keap1, which directs Nrf2 degradation. Keap1 inhibition is mediated by the modification of cysteine residues on Keap1, and can be triggered by electrophilic small molecules such as tBHQ. Here we show that astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling. Keap1 deficiency elevates basal Nrf2 target gene expression in astrocytes and occludes the effects of tBHQ, oxidative stress still induced strong Nrf2-dependent gene expression in Keap1-deficient astrocytes. Moreover, while tBHQ prevented protein degradation mediated via Nrf2's Neh2 domain, oxidative stress did not, consistent with a Keap1-independent mechanism. Moreover the effects of oxidative stress and tBHQ on Nrf2 target gene expression are additive, not occlusive. Mechanistically, oxidative stress enhances the transactivation potential of Nrf2's Neh5 domain in a manner dependent on its Cys-191 residue. Thus, astrocytic Nrf2 activation by oxidative stress involves Keap1-independent non-canonical signaling, meaning that further Nrf2 activation by Keap1-inhibiting drugs may be a viable therapeutic strategy.


Assuntos
Astrócitos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes , Astrócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo
19.
Am J Physiol Endocrinol Metab ; 299(5): E695-705, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20501874

RESUMO

High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1α, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior (P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1α, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P < 0.05). In C(2)C(12) muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P < 0.05). Collectively, these data show that a high-fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.


Assuntos
Gorduras na Dieta/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Gorduras na Dieta/metabolismo , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA/química , RNA/genética , Distribuição Aleatória , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
J Clin Invest ; 130(8): 4104-4117, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32407295

RESUMO

Diabetes, obesity, and Alzheimer's disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased ß-site amyloid precursor protein-cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and ß-amyloid (Aß) are linked with vascular disease development and increased BACE1 and Aß accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aß, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aß42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aß42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aß42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aß42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aß42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aß42. Lowering Aß42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.


Assuntos
Peptídeos beta-Amiloides/sangue , Diabetes Mellitus/sangue , Angiopatias Diabéticas/sangue , Obesidade/sangue , Fragmentos de Peptídeos/sangue , Transdução de Sinais , Peptídeos beta-Amiloides/genética , Animais , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Óxido Nítrico/sangue , Óxido Nítrico/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/genética , Obesidade/patologia , Fragmentos de Peptídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA