Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Surg Res ; 64(3): 352-361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37231808

RESUMO

INTRODUCTION: The use of cardiopulmonary bypass (CBP; also known as a heart-lung machine) in newborns with complex congenital heart defects may result in brain damage. Magnetic resonance imaging (MRI) assessments cannot be performed safely because the metal components used to construct CBP devices may elicit adverse effects on patients when they are placed in a magnetic field. Thus, this project aimed to develop a prototype MR-conditional circulatory support system that could be used to perform cerebral perfusion studies in animal models. METHODS: The circulatory support device includes a roller pump with two rollers. The ferromagnetic and most of the metal components of the roller pump were modified or replaced, and the drive was exchanged by an air-pressure motor. All materials used to develop the prototype device were tested in the magnetic field according to the American Society for Testing and Materials (ASTM) Standard F2503-13. The technical performance parameters, including runtime/durability as well as achievable speed and pulsation behavior, were evaluated and compared to standard requirements. The behavior of the prototype device was compared with a commercially available pump. RESULTS: The MRI-conditional pump system produced no image artifacts and could be safely operated in the presence of the magnetic field. The system exhibited minor performance-related differences when compared to a standard CPB pump; feature testing revealed that the prototype meets the requirements (i.e., operability, controllability, and flow range) needed to proceed with the planned animal studies. CONCLUSION: This MR-conditional prototype is suitable to perform an open-heart surgery in an animal model to assess brain perfusion in an MR environment.


Assuntos
Ponte Cardiopulmonar , Imageamento por Ressonância Magnética , Animais , Ponte Cardiopulmonar/métodos
2.
Behav Res Methods ; 54(1): 493-507, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34258709

RESUMO

Eye tracking (ET) technology is increasingly utilized to quantify visual behavior in the study of the development of domain-specific expertise. However, the identification and measurement of distinct gaze patterns using traditional ET metrics has been challenging, and the insights gained shown to be inconclusive about the nature of expert gaze behavior. In this article, we introduce an algorithmic approach for the extraction of object-related gaze sequences and determine task-related expertise by investigating the development of gaze sequence patterns during a multi-trial study of a simplified airplane assembly task. We demonstrate the algorithm in a study where novice (n = 28) and expert (n = 2) eye movements were recorded in successive trials (n = 8), allowing us to verify whether similar patterns develop with increasing expertise. In the proposed approach, AOI sequences were transformed to string representation and processed using the k-mer method, a well-known method from the field of computational biology. Our results for expertise development suggest that basic tendencies are visible in traditional ET metrics, such as the fixation duration, but are much more evident for k-mers of k > 2. With increased on-task experience, the appearance of expert k-mer patterns in novice gaze sequences was shown to increase significantly (p < 0.001). The results illustrate that the multi-trial k-mer approach is suitable for revealing specific cognitive processes and can quantify learning progress using gaze patterns that include both spatial and temporal information, which could provide a valuable tool for novice training and expert assessment.


Assuntos
Movimentos Oculares , Aprendizagem , Humanos
3.
J Med Syst ; 45(5): 55, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33768346

RESUMO

The handling of left ventricular assist devices (LVADs) can be challenging for patients and requires appropriate training. The devices' usability impacts patients' safety and quality of life. In this study, an eye tracking supported human factors testing was performed to reveal problems during use and test the trainings' effectiveness. In total 32 HeartWare HVAD patients (including 6 pre-VAD patients) and 3 technical experts as control group performed a battery change (BC) and a controller change (CC) as an everyday and emergency scenario on a training device. By tracking the patients' gaze point, task duration and pump-off time were evaluated. Patients with LVAD support ≥1 year showed significantly shorter BC task duration than patients with LVAD support <1 year (p = 0.008). In contrast their CC task duration (p = 0.002) and pump-off times (median = 12.35 s) were higher than for LVAD support patients <1 year (median = 5.3 s) with p = 0.001. The shorter BC task duration for patients with LVAD support ≥1 year indicate that with time patients establish routines and gain confidence using their device. The opposite effect was found for CC task duration and pump-off times. This implies the need for intermittent re-training of less frequent tasks to increase patients' safety.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Tecnologia de Rastreamento Ocular , Humanos , Qualidade de Vida , Estudos Retrospectivos , Fatores de Tempo
4.
Biomed Microdevices ; 22(1): 21, 2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32088807

RESUMO

Overdrainage in upright position is one of the most prevalent issues in treating hydrocephalus with a cerebrospinal fluid (CSF) shunt. Anti-siphon devices (ASDs) are employed to reduce this problem. A novel microelectromechanical system (MEMS)-based valve, termed Chronoflow device, aims to regulate CSF drainage indifferently of the body posture. With this study, the suitability of this MEMS-based valve is evaluated regarding its use for the treatment of hydrocephalus, particularly for the prevention of overdrainage and blockage. In total, four Chronoflow devices were tested. An established in-vitro hardware-in-the-loop (HIL) test bed was used to investigate the valves regarding their pressure-flow characteristics, their behaviors towards CSF dynamics, and their capabilities to prevent CSF overdrainage in upright position. Additionally, a contamination test was conducted to evaluate the susceptibility of the device to blockage due to particles. All valves tested regulated the drainage rate at similar nominal flows and independently of posture. The pressure-flow relation measured, however, was notably higher than numerically calculated. Regarding the CSF dynamics, the first three valves tested led to a decreased steady-state intracranial pressure in supine position and showed stable drainage rate in upright position. During the transitional phase from supine to upright and vice versa, the valves continuously adjusted the outflow resistance, which resulted in a stable transitional phase preventing overdrainage. Yet, the fourth valve showed continuous overdrainage in upright position due to an increased nominal flow. However, after several test iterations the nominal flow decreased and stabilized at a level similar to that of the first three valves tested. The contamination test showed that most particles initially adhere to the pillars and spread throughout the cavity of the valve as the concentration of particles increases, thereby affecting the displacement of the membrane. The devices generally provide a stable flow regulation and prevent overdrainage in upright position. Specifically, their drainage behaviors during the posture changes are very effective. However, they also showed high hysteresis and sensitivity towards particle contamination, which resulted in initial increased and altering nominal flows after many test iterations. This result suggests that the MEMS design presented lacks robustness. Yet, an upstream filter and specific coatings on the fluid pathway may increase significantly its reliability.


Assuntos
Derivações do Líquido Cefalorraquidiano , Hidrocefalia , Implantes Experimentais , Pressão Intracraniana , Sistemas Microeletromecânicos , Postura , Humanos , Hidrocefalia/fisiopatologia , Hidrocefalia/cirurgia
5.
Catheter Cardiovasc Interv ; 95(6): 1202-1209, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531936

RESUMO

BACKGROUND: Training in transcatheter cardiovascular skills today represents a significant challenge because of the complexity of the interventions and an extensive use of multiple live imaging technologies. OBJECTIVES: We describe the design, the face validation, and content validation of a newly developed physical transseptal puncture (TSP) simulator using additive manufacturing techniques and novel imaging simulation solutions. METHODS: The TSP simulator contains a femoral vein catheterization pad, silicon phantoms of the venous system, a replaceable interatrial septum, and cameras to mimic live fluoroscopic and echocardiographic imaging. A validation study was conducted at the University Hospital of Zurich. A total of 14 interventional cardiologists and cardiac surgeons assessed the TSP simulator. Participants performed a TSP on the simulator using standard interventional tools. Face and content validity was demonstrated using a 5-point Likert scale. RESULTS: The TSP simulator is a new training tool for transcatheter cardiovascular interventions. All interventional cardiologists and cardiac surgeons completed the training exercise and scoring. Overall impression was rated (out of 5) 4.04 ± 1.03, haptic feedback scored 4.13 ± 0.82, and the realism of fluoroscopy simulation 4.39 ± 0.79. Usability was rated 4.50 ± 0.63 by the participants, indicating that the simulator could be suitable for training. CONCLUSION: We demonstrated face and content validity of a new simulator for transcatheter cardiovascular interventions. The TSP simulator's usability, haptic feedback, imaging solutions, and the overall impression of its usage were reported as very realistic. The TSP simulator represents a promising tool for simulation-based training using real interventional toolkits in a mimicked radiological environment.


Assuntos
Cateterismo Cardíaco , Cardiologistas/educação , Educação de Pós-Graduação em Medicina/métodos , Septos Cardíacos , Treinamento por Simulação , Cirurgiões/educação , Competência Clínica , Simulação por Computador , Septos Cardíacos/diagnóstico por imagem , Humanos , Modelos Cardiovasculares , Punções , Análise e Desempenho de Tarefas
6.
Clin Exp Rheumatol ; 38 Suppl 125(3): 137-139, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865166

RESUMO

OBJECTIVES: The assessment of digital ulcers (DUs) in systemic sclerosis (SSc) depends crucially on visual aspects. However, little is known about the differences in visual assessment of these wounds between experts and non-experts or medical lay persons (novices). To develop potential training recommendations for the visual assessment of digital ulcers in SSc, we analysed gaze pattern data during assessment of digital ulcers between assessors with different levels of expertise. METHODS: Gaze pattern data from 36 participants were collected with a mobile eye tracking device. 20 pictures from digital ulcers of SSc patients were presented to each participant. The analysis comprised the scan path, the dwell times (for areas of interest), fixation counts and the entry time for each picture and subject. RESULTS: Most significant differences were found between novices and medically educated groups. Dwell times in the wound area for novices differed statistically significantly from all medically educated groups (1.76s-3.1s less). Above all, novices had lower dwell times in wound margin and wound surrounding and spent more time in other areas (up to 1.92s longer). Correspondingly, they had less fixation points and longer overall scan paths in wound areas. Similar gaze pattern data were generated for medically educated groups. CONCLUSIONS: For the first time, we could analyse the visual assessment of digital ulcers in SSc and detected differences according to levels of medical education and expertise. Adequate training on proper interpretation of changes in all wound areas are warranted to improve wound assessment in digital ulcers.


Assuntos
Escleroderma Sistêmico , Úlcera Cutânea , Dedos , Humanos , Úlcera
7.
Br J Anaesth ; 124(2): 173-182, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31864721

RESUMO

BACKGROUND: Syringe infusion pumps are used for the precise continuous administration of intravenous drugs. Their compliance and mechanical deficiencies have been found to cause considerable start-up delays, flow irregularities during vertical displacement, as well extensive delays of occlusion alarms at low infusion rates. The aim of this study was to evaluate the performance of several modern syringe infusion pumps at low infusion rates and the impact on drug concentration. METHODS: Seven currently marketed syringe infusion pump assemblies were assessed in an in vitro study during start-up, vertical displacement manoeuvres, and infusion line occlusion at a set flow rate of 1 ml h-1. The measured data were used as input for a pharmacokinetic simulation modelling plasma concentration during a standard neonatal continuous epinephrine infusion. RESULTS: The mean time from starting the infusion pump to steady-state flow varied from 89 to 1622 s. The zero-drug delivery time after lowering the pump ranged from 145 to 335 s. In all assemblies tested, occlusion alarm delays and measured flow irregularities during vertical displacement manoeuvres resulted in relevant deviations in plasma epinephrine concentration (>25%) as calculated by the pharmacokinetic simulation model. CONCLUSION: Problems with the performance of syringe infusion pump assemblies can have considerable impact on plasma drug concentration when highly concentrated short-acting cardiovascular drugs are administered at low flow rates. The problems, which affected all assemblies tested, are mainly related to the functional principle of syringe infusion pumps and will only partially be solved by incremental improvements of existing equipment.


Assuntos
Epinefrina/administração & dosagem , Bombas de Infusão , Infusões Intravenosas/instrumentação , Modelos Biológicos , Assistência Perioperatória/métodos , Seringas , Desenho de Equipamento , Humanos , Recém-Nascido
8.
Artif Organs ; 44(10): E394-E405, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32321193

RESUMO

Pulsatile ventricular assist devices (pVADs) yield a blood flow that imitates the pulsatile flow of the heart and, therefore, could diminish the adverse events related to the continuous flow provided by the ventricular assist devices that are commonly used. However, their intrinsic characteristics of larger size and higher weight set a burden to their implantation, that along with the frequent mechanical failures and thrombosis events, reduce the usage of pVADs in the clinical environment. In this study, we investigated the possibility to reduce the pump size by using high pump stroke ratios while maintaining the ability to control the hemodynamics of the cardiovascular system (CVS). In vitro and in vivo experiments were conducted with a custom pVAD implemented on a hybrid mock circulation system and in five sheep, respectively. The actuation of the pVAD was synchronized with the heartbeat. Variations of the pump stroke ratio, time delay between the pump stroke and the heart stroke, as well as duration of the pump systole in respect to the total cardiac cycle duration were used to evaluate the effects of various pump settings on the hemodynamics of the CVS. The results suggest that by varying the operating settings of the pVAD, a pulsatile flow that provides physiological hemodynamic parameters, as well as a control over the hemodynamic parameters, can be achieved. Additionally, by employing high pump stroke ratios, the size of the pVAD can be significantly reduced; however, at those high pump stroke ratios, the effect of the other pump parameters diminishes.


Assuntos
Insuficiência Cardíaca/cirurgia , Ventrículos do Coração/fisiopatologia , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Desenho de Prótese , Animais , Eletrocardiografia , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Modelos Animais , Fluxo Pulsátil/fisiologia , Ovinos
9.
Paediatr Anaesth ; 30(8): 885-891, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32443169

RESUMO

OBJECTIVE: The current study aimed to evaluate the extent of the slide-stick phenomenon in differently designed infusion syringes at various infusion rates and filling positions. METHODS: Fluid delivery from three 50-mL infusion syringe brands (BD; Codan; Fresenius) was investigated using a flow sensor at flow rates of 0.5, 1.0, or 5.0 mL h-1 , with the syringes filled with either 10, 30, or 50 mL of distilled water. Two identical models (A/B) of the same infusion pump model were used. The effect of flow rate variations on the plasma concentration of a continuous epinephrine infusion in a 3 kg neonate receiving a continuous infusion of 0.1 µg kg min-1 epinephrine was studied using a pharmacokinetic simulation model. RESULTS: Considerable variations in calculated plasma epinephrine concentration were detected between flow rates of 5 and 0.5 or 1 mL h-1 for all syringe types and filling volumes. The median deviation of plasma concentration for the 5 mL h-1 flow rate varied depending on assembly from 1.3% (Codan) to 1.8% (Fresenius). This was more pronounced for lower flow rates, where at 1 mL h-1 the deviation varied from 3.3% (BD) to 4.8% (Fresenius) and at 0.5 mL h-1 from 4.9% (BD) to 5.4% (Fresenius). Differences between filling volumes (within syringe type and flow rate) did not appear to have relevant influence on variations in calculated plasma epinephrine concentration. CONCLUSION: Infusion set rate rather than syringe brand or filling volume was a major predictor for syringe stiction-related amount of variation in the calculated plasma epinephrine concentration.


Assuntos
Bombas de Infusão , Seringas , Epinefrina , Humanos , Recém-Nascido
10.
Artif Organs ; 43(12): 1170-1181, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31211873

RESUMO

Ventricular assist devices (VADs) are an established treatment option for heart failure (HF). However, the devices are often plagued by material-related hemocompatibility issues. In contrast to continuous flow VADs with high shear stresses, pulsatile VADs (pVADs) offer the potential for an endothelial cell coating that promises to prevent many adverse events caused by an insufficient hemocompatibility. However, their size and weight often precludes their intracorporeal implantation. A reduction of the pump body size and weight of the pump could be achieved by an increase in the stroke frequency while maintaining a similar cardiac output. We present a new pVAD system consisting of a pump and an actuator specifically designed for actuation frequencies of up to 240 bpm. In vitro and in vivo results of the short-term reaction of the cardiovascular system show no significant changes in left ventricular and aortic pressure between actuation frequencies from 60 to 240 bpm. The aortic pulsatility increases when the actuation frequency is raised while the heart rate remains unaffected in vivo. These results lead us to the conclusion that the cardiovascular system tolerates short-term increases of the pVAD stroke frequencies.


Assuntos
Pressão Arterial , Frequência Cardíaca , Coração Auxiliar , Função Ventricular , Animais , Aorta/fisiologia , Feminino , Insuficiência Cardíaca/terapia , Humanos , Desenho de Prótese , Implantação de Prótese , Fluxo Pulsátil , Ovinos
11.
Artif Organs ; 43(5): 467-477, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30357874

RESUMO

Future left ventricular assist devices (LVADs) are expected to respond to the physiologic need of patients; however, they still lack reliable pressure or volume sensors for feedback control. In the clinic, echocardiography systems are routinely used to measure left ventricular (LV) volume. Until now, echocardiography in this form was never integrated in LVADs due to its computational complexity. The aim of this study was to demonstrate the applicability of a simplified ultrasonic sensor to fit an LVAD cannula and to show the achievable accuracy in vitro. Our approach requires only two ultrasonic transducers because we estimated the LV volume with the LV end-diastolic diameter commonly used in clinical assessments. In order to optimize the accuracy, we assessed the optimal design parameters considering over 50 orientations of the two ultrasonic transducers. A test bench was equipped with five talcum-infused silicone heart phantoms, in which the intra-ventricular surface replicated papillary muscles and trabeculae carnae. The end-diastolic LV filling volumes of the five heart phantoms ranged from 180 to 480 mL. This reference volume was altered by ±40 mL with a syringe pump. Based on the calibrated measurements acquired by the two ultrasonic transducers, the LV volume was estimated well. However, the accuracies obtained are strongly dependent on the choice of the design parameters. Orientations toward the septum perform better, as they interfere less with the papillary muscles. The optimized design is valid for all hearts. Considering this, the Bland-Altman analysis reports the LV volume accuracy as a bias of ±10% and limits of agreement of 0%-40% in all but the smallest heart. The simplicity of traditional echocardiography systems was reduced by two orders of magnitude in technical complexity, while achieving a comparable accuracy to 2D echocardiography requiring a calibration of absolute volume only. Hence, our approach exploits the established benefits of echocardiography and makes them applicable as an LV volume sensor for LVADs.


Assuntos
Ventrículos do Coração/anatomia & histologia , Coração Auxiliar , Coração/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Diástole , Ecocardiografia , Ecocardiografia Tridimensional , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Tamanho do Órgão , Impressão Tridimensional , Volume Sistólico , Ultrassom , Função Ventricular
12.
Artif Organs ; 43(4): 363-376, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30129977

RESUMO

Ventricular assist devices (VADs), among which the HeartMate 3 (HM3) is the latest clinically approved representative, are often the therapy of choice for patients with end-stage heart failure. Despite advances in the prevention of pump thrombosis, rates of stroke and bleeding remain high. These complications are attributed to the flow field within the VAD, among other factors. One of the HM3's characteristic features is an artificial pulse that changes the rotor speed periodically by 4000 rpm, which is meant to reduce zones of recirculation and stasis. In this study, we investigated the effect of this speed modulation on the flow fields and stresses using high-resolution computational fluid dynamics. To this end, we compared Eulerian and Lagrangian features of the flow fields during constant pump operation, during operation with the artificial pulse feature, and with the effect of the residual native cardiac cycle. We observed good washout in all investigated situations, which may explain the low incidence rates of pump thrombosis. The artificial pulse had no additional benefit on scalar washout performance, but it induced rapid variations in the flow velocity and its gradients. This may be relevant for the removal of deposits in the pump. Overall, we found that viscous stresses in the HM3 were lower than in other current VADs. However, the artificial pulse substantially increased turbulence, and thereby also total stresses, which may contribute to clinically observed issues related to hemocompatibility.


Assuntos
Simulação por Computador , Coração Auxiliar , Hemodinâmica , Hidrodinâmica , Modelos Cardiovasculares , Insuficiência Cardíaca/terapia , Humanos , Pulso Arterial
13.
J Appl Clin Med Phys ; 20(10): 152-159, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31535782

RESUMO

INTRODUCTION: Intrafractional motion can cause substantial uncertainty in precision radiotherapy. Traditionally, the target volume is defined to be sufficiently large to cover the tumor in every position. With the robotic treatment couch, a real-time motion compensation can improve tumor coverage and organ at risk sparing. However, this approach poses additional requirements, which are systematically developed and which allow the ideal robotic couch to be specified. METHODS AND MATERIALS: Data of intrafractional tumor motion were collected and analyzed regarding motion range, frequency, speed, and acceleration. Using this data, ideal couch requirements were formulated. The four robotic couches Protura, Perfect Pitch, RoboCouch, and RPSbase were tested with respect to these requirements. RESULTS: The data collected resulted in maximum speed requirements of 60 mm/s in all directions and maximum accelerations of 80 mm/s2 in the longitudinal, 60 mm/s2 in the lateral, and 30 mm/s2 in the vertical direction. While the two robotic couches RoboCouch and RPSbase completely met the requirements, even these two showed a substantial residual motion (40% of input amplitude), arguably due to their time delays. CONCLUSION: The requirements for the motion compensation by an ideal couch are formulated and found to be feasible for currently available robotic couches. However, the performance these couches can be improved further regarding the position control if the demanded speed and acceleration are taken into account as well.


Assuntos
Movimento , Neoplasias/fisiopatologia , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/instrumentação , Robótica/métodos , Algoritmos , Humanos , Neoplasias/radioterapia , Dosagem Radioterapêutica , Radioterapia Assistida por Computador/métodos
14.
J Med Syst ; 44(1): 12, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31807889

RESUMO

The aim was to gain insights into the visual behaviour and the perceptual skills of operators during catheter-based cardiovascular interventions (CBCVIs). A total of 33 CBCVIs were performed at the University Hospital Zurich by five operators, two experts and three novices, while wearing eye tracking glasses. The visual attention distribution on three areas of interest (AOIs) the "Echo screen", "Fluoro screen" and "Patient" was analysed for the transseptal puncture procedure. Clear visual behaviour patterns were observable in all cases. There is a significant differences in visual attention distribution of the experts compared to the novices. Experts spent 79% of dwell time on the Echo screen and 17% on the Fluoro screen, novices spent 52% on the Echo screen and 40% on the Fluoro screen. Additionally, results showed that experts focused their gaze on smaller areas than novices during critical interventional actions. Operators seem to exhibit identifiable visual behaviour patterns for CBCVIs. These identifiable patterns were significantly different between the expert and the novice operators. This indicates that the visual behaviour of operators could be employed to assist transfer of experts' perceptual skills to novices and to develop tools for objective performance assessment.


Assuntos
Doenças Cardiovasculares/cirurgia , Cateterismo , Competência Clínica , Movimentos Oculares , Cirurgiões , Humanos , Masculino , Suíça
15.
Artif Organs ; 42(3): E29-E42, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29094351

RESUMO

Various physiological controllers for left ventricular assist devices (LVADs) have been developed to prevent flow conditions that may lead to left ventricular (LV) suction and overload. In the current study, we selected and implemented six of the most promising physiological controllers presented in literature. We tuned the controllers for the same objectives by using the loop-shaping method from control theory. The in vitro experiments were derived from literature and included different preload, afterload, and contractility variations. All experiments were repeated with an increased or decreased contractility from the baseline pathological circulation and with simulated sensor drift. The controller performances were compared with an LVAD operated at constant speed (CS) and a physiological circulation. During preload variations, all controllers resulted in a pump flow change that resembled the cardiac output response of the physiological circulation. For afterload variations, the response varied among the controllers, whereas some of them presented a high sensitivity to contractility or sensor drift, leading to LV suction and overload. In such cases, the need for recalibration of the controllers or the sensor is indicated. Preload-based physiological controllers showed their clinical significance by outperforming the CS operation and promise many benefits for the LVAD therapy. However, their clinical implementation in the near future for long-term use is highly dependent on the sensor technology and its reliability.


Assuntos
Coração Auxiliar , Algoritmos , Pressão Sanguínea , Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Humanos , Modelos Cardiovasculares , Sucção , Função Ventricular
16.
Artif Organs ; 42(1): 68-77, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28718516

RESUMO

A mock circulation allows the in vitro investigation, development, and testing of ventricular assist devices. An aqueous-glycerol solution is commonly used to mimic the viscosity of blood. Due to evaporation and temperature changes, the viscosity of the solution drifts from its initial value and therefore, deviates substantially from the targeted viscosity of blood. Additionally, the solution needs to be exchanged to account for changing viscosities when mimicking different hematocrits. This article presents a method to control the viscosity in a mock circulation. This method makes use of the relationship between temperature and viscosity of aqueous-glycerol solutions and employs the automatic control of the viscosity of the fluid. To that end, an existing mock circulation was extended with an industrial viscometer, temperature probes, and a heating nozzle band. The results obtained with different fluid viscosities show that a viscosity controller is vital for repeatable experimental conditions on mock circulations. With a mixture ratio of 49 mass percent of aqueous-glycerol solution, the controller can mimic a viscosity range corresponding to a hematocrit between 29 and 42% in a temperature range of 30-42°C. The control response has no overshoot and the settling time is 8.4 min for a viscosity step of 0.3 cP, equivalent to a hematocrit step of 3.6%. Two rotary blood pumps that are in clinical use are tested at different viscosities. At a flow rate of 5 L/min, both show a deviation of roughly 15 and 10% in motor current for high rotor speeds. The influence of different viscosities on the measured head pressure is negligible. Viscosity control for a mock circulation thus plays an important role for assessing the required motor current of ventricular assist devices. For the investigation of the power consumption of rotary blood pumps and the development of flow estimators where the motor current is a model input, an integrated viscosity controller is a valuable contribution to an accurate testing environment.


Assuntos
Viscosidade Sanguínea , Desenho de Equipamento/métodos , Coração Auxiliar , Modelos Cardiovasculares , Desenho de Equipamento/instrumentação , Glicerol/química , Insuficiência Cardíaca/cirurgia , Hematócrito , Humanos , Soluções , Temperatura , Viscosidade , Água/química
17.
Artif Organs ; 42(5): 510-515, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29341175

RESUMO

The HeartWare HVAD is a radial rotary blood pump with a combination of passive magnetic and hydrodynamic bearings to levitate the impeller. The axial gap size between impeller and housing in this bearing and its sensitivity to speed, flow, and pressure difference is difficult to assess. Shear stresses are exceptionally high in this tiny gap making it important for blood damage and related adverse events. Therefore, the aim of this study was to measure the axial gap clearance in the HVAD at different operating conditions employing radiography. To quantify the gap size in the HVAD, the pump was positioned 30 mm in front of the X-ray source employing a microfocus X-ray tube with an acceleration voltage up to 300 kV. Beams were detected on a flat panel detector (Perkin Elmer XRD 1611-CP3). The pump was connected to a tubing circuit with a throttle to adjust flow (0, 5, 10 L/min) and a water glycerol mixture to set the desired viscosity (1, 4, 8 mPas). Rotational speed was varied between 1800 and 3600 rpm. In this study, for clinically relevant conditions at 5 L/min and 2700 rpm, the axial gap was 22 µm. The gap size increased with rotational speeds dependent on the viscosity (2.8, 6.9, and 9.4 µm/1000 rpm for 1, 4, and 8 mPas, respectively), but was independent from the volume flow and the pressure head at constant speeds. In summary, using X-ray radiographic imaging small gaps in a rotary blood pump during operation can be measured in a nondestructive contact-free way. The axial hydrodynamic bearing gap in the HVAD pump was determined to be in the range of about three times the diameter of a red blood cell. Its dependence on operating volume flow and generated pressure head across the pump is not pronounced.


Assuntos
Coração Auxiliar , Hidrodinâmica , Magnetismo/instrumentação , Desenho de Equipamento , Humanos , Radiografia , Estresse Mecânico , Raios X
18.
J Neuroeng Rehabil ; 15(1): 18, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29534730

RESUMO

BACKGROUND: Powered exoskeletons are a promising approach to restore the ability to walk after spinal cord injury (SCI). However, current exoskeletons remain limited in their walking speed and ability to support tasks of daily living, such as stair climbing or overcoming ramps. Moreover, training progress for such advanced mobility tasks is rarely reported in literature. The work presented here aims to demonstrate the basic functionality of the VariLeg exoskeleton and its ability to enable people with motor complete SCI to perform mobility tasks of daily life. METHODS: VariLeg is a novel powered lower limb exoskeleton that enables adjustments to the compliance in the leg, with the objective of improving the robustness of walking on uneven terrain. This is achieved by an actuation system with variable mechanical stiffness in the knee joint, which was validated through test bench experiments. The feasibility and usability of the exoskeleton was tested with two paraplegic users with motor complete thoracic lesions at Th4 and Th12. The users trained three times a week, in 60 min sessions over four months with the aim of participating in the CYBATHLON 2016 competition, which served as a field test for the usability of the exoskeleton. The progress on basic walking skills and on advanced mobility tasks such as incline walking and stair climbing is reported. Within this first study, the exoskeleton was used with a constant knee stiffness. RESULTS: Test bench evaluation of the variable stiffness actuation system demonstrate that the stiffness could be rendered with an error lower than 30 Nm/rad. During training with the exoskeleton, both users acquired proficient skills in basic balancing, walking and slalom walking. In advanced mobility tasks, such as climbing ramps and stairs, only basic (needing support) to intermediate (able to perform task independently in 25% of the attempts) skill levels were achieved. After 4 months of training, one user competed at the CYBATHLON 2016 and was able to perform 3 (stand-sit-stand, slalom and tilted path) out of 6 obstacles of the track. No adverse events occurred during the training or the competition. CONCLUSION: Demonstration of the applicability to restore ambulation for people with motor complete SCI was achieved. The CYBATHLON highlighted the importance of training and gaining experience in piloting an exoskeleton, which were just as important as the technical realization of the robot.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal/reabilitação , Adulto , Desenho de Equipamento , Humanos , Masculino , Pessoa de Meia-Idade , Paraplegia/etiologia , Paraplegia/reabilitação , Traumatismos da Medula Espinal/complicações , Caminhada
19.
Artif Organs ; 41(10): 948-958, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28691283

RESUMO

The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH). Using the form of a human heart, we designed a sTAH, which consists of only two ventricles and produced it using a 3D-printing, lost-wax casting technique. The diastolic properties of the sTAH were defined and the performance of the sTAH was evaluated on a hybrid mock circulation under various physiological conditions. The sTAH achieved a blood flow of 2.2 L/min against a systemic vascular resistance of 1.11 mm Hg s/mL (afterload), when operated at 80 bpm. At the same time, the mean pulmonary venous pressure (preload) was fixed at 10 mm Hg. Furthermore, an aortic pulse pressure of 35 mm Hg was measured, with a mean aortic pressure of 48 mm Hg. The sTAH generated physiologically shaped signals of blood flow and pressures by mimicking the movement of a real heart. The preliminary results of this study show a promising potential of the soft pumps in heart replacements. Further work, focused on increasing blood flow and in turn aortic pressure is required.


Assuntos
Coração Artificial , Hemodinâmica , Impressão Tridimensional , Pressão Arterial , Pressão Sanguínea , Humanos , Teste de Materiais/instrumentação , Modelos Cardiovasculares , Desenho de Prótese , Resistência Vascular
20.
Artif Organs ; 40(9): 842-55, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27645395

RESUMO

The current article presents a novel physiological feedback controller for turbodynamic ventricular assist devices (tVADs). This controller is based on the recording of the left ventricular (LV) pressure measured at the inlet cannula of a tVAD thus requiring only one pressure sensor. The LV systolic pressure (SP) is proposed as an indicator to determine the varying perfusion requirements. The algorithm to extract the SP from the pump inlet pressure signal used for the controller to adjust the speed of the tVAD shows robust behavior. Its performance was evaluated on a hybrid mock circulation. The experiments with changing perfusion requirements were compared with a physiological circulation and a pathological one assisted with a tVAD operated at constant speed. A sensitivity analysis of the controller parameters was conducted to identify their limits and their influence on a circulation. The performance of the proposed SP controller was evaluated for various values of LV contractility, as well as for a simulated pressure sensor drift. The response of a pathological circulation assisted by a tVAD controlled by the introduced SP controller matched the physiological circulation well, while over- and underpumping events were eliminated. The controller presented a robust performance during experiments with simulated pressure sensor drift.


Assuntos
Coração Auxiliar , Pressão Ventricular , Pressão Sanguínea , Desenho de Equipamento , Humanos , Modelos Cardiovasculares , Fluxo Pulsátil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA