Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 60(22): 1776-1786, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019384

RESUMO

The tautomerase superfamily (TSF) is a collection of enzymes and proteins that share a simple ß-α-ß structural scaffold. Most members are constructed from a single-core ß-α-ß motif or two consecutively fused ß-α-ß motifs in which the N-terminal proline (Pro-1) plays a key and unusual role as a catalytic residue. The cumulative evidence suggests that a gene fusion event took place in the evolution of the TSF followed by duplication (of the newly fused gene) to result in the diversification of activity that is seen today. Analysis of the sequence similarity network (SSN) for the TSF identified several linking proteins ("linkers") whose similarity links subgroups of these contemporary proteins that might hold clues about structure-function relationship changes accompanying the emergence of new activities. A previously uncharacterized pair of linkers (designated N1 and N2) was identified in the SSN that connected the 4-oxalocrotonate tautomerase (4-OT) and cis-3-chloroacrylic acid dehalogenase (cis-CaaD) subgroups. N1, in the cis-CaaD subgroup, has the full complement of active site residues for cis-CaaD activity, whereas N2, in the 4-OT subgroup, lacks a key arginine (Arg-39) for canonical 4-OT activity. Kinetic characterization and nuclear magnetic resonance analysis show that N1 has activities observed for other characterized members of the cis-CaaD subgroup with varying degrees of efficiencies. N2 is a modest 4-OT but shows enhanced hydratase activity using allene and acetylene compounds, which might be due to the presence of Arg-8 along with Arg-11. Crystallographic analysis provides a structural context for these observations.


Assuntos
Hidrolases/química , Isomerases/química , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Catálise , Domínio Catalítico/fisiologia , Evolução Molecular , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos
2.
Biochemistry ; 59(16): 1592-1603, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32242662

RESUMO

Tautomerase superfamily (TSF) members are constructed from a single ß-α-ß unit or two consecutively joined ß-α-ß units. This pattern prevails throughout the superfamily consisting of more than 11000 members where homo- or heterohexamers are localized in the 4-oxalocrotonate tautomerase (4-OT) subgroup and trimers are found in the other four subgroups. One exception is a subset of sequences that are double the length of the short 4-OTs in the 4-OT subgroup, where the coded proteins form trimers. Characterization of two members revealed an interesting dichotomy. One is a symmetric trimer, whereas the other is an asymmetric trimer. One monomer is flipped 180° relative to the other two monomers so that three unique protein-protein interfaces are created that are composed of different residues. A bioinformatics analysis of the fused 4-OT subset shows a further division into two clusters with a total of 133 sequences. The analysis showed that members of one cluster (86 sequences) have more salt bridges if the asymmetric trimer forms, whereas the members of the other cluster (47 sequences) have more salt bridges if the symmetric trimer forms. This hypothesis was examined by the kinetic and structural characterization of two proteins within each cluster. As predicted, all four proteins function as 4-OTs, where two assemble into asymmetric trimers (designated R7 and F6) and two form symmetric trimers (designated W0 and Q0). These findings can be extended to the other sequences in the two clusters in the fused 4-OT subset, thereby annotating their oligomer properties and activities.


Assuntos
Proteínas de Bactérias/química , Isomerases/química , Estrutura Quaternária de Proteína , Alcaligenaceae/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Bordetella/enzimologia , Burkholderia/enzimologia , Burkholderiaceae/enzimologia , Biologia Computacional , Cinética , Alinhamento de Sequência
3.
J Am Chem Soc ; 142(34): 14522-14531, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32623882

RESUMO

Two azobenzenesulfonamide molecules with thermally stable cis configurations resulting from fluorination of positions ortho to the azo group are reported that can differentially regulate the activity of carbonic anhydrase in the trans and cis configurations. These fluorinated probes each use two distinct visible wavelengths (520 and 410 or 460 nm) for isomerization with high photoconversion efficiency. Correspondingly, the cis isomer of these systems is highly stable and persistent (as evidenced by structural studies in solid and solution state), permitting regulation of metalloenzyme activity without continuous irradiation. Herein, we use these probes to demonstrate the visible light mediated bidirectional control over the activity of zinc-dependent carbonic anhydrase in solution as an isolated protein, in intact live cells and in vivo in zebrafish during embryo development.


Assuntos
Compostos Azo/química , Anidrases Carbônicas/metabolismo , Luz , Sondas Moleculares/química , Sulfonamidas/química , Animais , Compostos Azo/síntese química , Anidrases Carbônicas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Sondas Moleculares/síntese química , Estrutura Molecular , Sulfonamidas/síntese química , Peixe-Zebra/embriologia , Benzenossulfonamidas
4.
Biochemistry ; 58(1): 48-53, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30358990

RESUMO

We report two small molecule azobenzenesulfonamide probes, CAP1 and CAP2, capable of photomodulating the activity of carbonic anhydrase (CA) on demand. In the trans form, CAP azobenzene probes adopt a linear shape, making them suitable for occupying the CA active site and interacting with Zn2+, thereby inhibiting enzyme activity. Following irradiation with either 365 or 410 nm light, the CAP probes isomerize to their cis form. Because of the change in steric profile, the probe exits the active site, and the activity of the enzyme is restored. The cis isomer can revert back to the trans isomer through thermal relaxation or via photoirradiation with 460 nm light and thereby inhibit protein activity again. This process can be repeated multiple times without any photodegradation and thus can be used to inhibit or activate the protein reversibly. Importantly, we demonstrate our ability to apply CAP azobenzene probes to regulate CA activity both in an isolated protein solution and in live cells, where the two isomers of CAP1 differentially regulate the intracellular cytosolic pH.


Assuntos
Compostos Azo/química , Anidrases Carbônicas/química , Fotoquímica , Sulfonamidas/farmacologia , Anidrases Carbônicas/metabolismo , Domínio Catalítico , Humanos , Isomerismo , Sulfonamidas/química
5.
Biochemistry ; 58(22): 2617-2627, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074977

RESUMO

A 4-oxalocrotonate tautomerase (4-OT) trimer has been isolated from Burkholderia lata, and a kinetic, mechanistic, and structural analysis has been performed. The enzyme is the third described oligomer state for 4-OT along with a homo- and heterohexamer. The 4-OT trimer is part of a small subset of sequences (133 sequences) within the 4-OT subgroup of the tautomerase superfamily (TSF). The TSF has two distinct features: members are composed of a single ß-α-ß unit (homo- and heterohexamer) or two consecutively joined ß-α-ß units (trimer) and generally have a catalytic amino-terminal proline. The enzyme, designated as fused 4-OT, functions as a 4-OT where the active site groups (Pro-1, Arg-39, Arg-76, Phe-115, Arg-127) mirror those in the canonical 4-OT from Pseudomonas putida mt-2. Inactivation by 2-oxo-3-pentynoate suggests that Pro-1 of fused 4-OT has a low p Ka enabling the prolyl nitrogen to function as a general base. A remarkable feature of the fused 4-OT is the absence of P3 rotational symmetry in the structure (1.5 Å resolution). The asymmetric arrangement of the trimer is not due to the fusion of the two ß-α-ß building blocks because an engineered "unfused" variant that breaks the covalent bond between the two units (to generate a heterohexamer) assumes the same asymmetric oligomerization state. It remains unknown how the different active site configurations contribute to the observed overall activities and whether the asymmetry has a biological purpose or role in the evolution of TSF members.


Assuntos
Proteínas de Bactérias/química , Isomerases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Burkholderia/enzimologia , Domínio Catalítico , Ácidos Graxos Insaturados/química , Isomerases/genética , Isomerases/isolamento & purificação , Cinética , Modelos Químicos , Mutação , Estrutura Quaternária de Proteína , Pseudomonas putida/enzimologia , Alinhamento de Sequência
6.
Biochemistry ; 57(25): 3524-3536, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29856600

RESUMO

NahE and PhdJ are bifunctional hydratase-aldolases in bacterial catabolic pathways for naphthalene and phenanthrene, respectively. Bacterial species with these pathways can use polycyclic aromatic hydrocarbons (PAHs) as sole sources of carbon and energy. Because of the harmful properties of PAHs and their widespread distribution and persistence in the environment, there is great interest in understanding these degradative pathways, including the mechanisms and specificities of the enzymes found in the pathways. This knowledge can be used to develop and optimize bioremediation techniques. Although hydratase-aldolases catalyze a major step in the PAH degradative pathways, their mechanisms are poorly understood. Sequence analysis identified NahE and PhdJ as members of the N-acetylneuraminate lyase (NAL) subgroup in the aldolase superfamily. Both have a conserved lysine and tyrosine (for Schiff base formation) as well as a GXXGE motif (to bind the pyruvoyl carboxylate group). Herein, we report the structures of NahE, PhdJ, and PhdJ covalently bound to substrate via a Schiff base. Structural analysis and dynamic light scattering experiments show that both enzymes are tetramers. A hydrophobic helix insert, present in the active sites of NahE and PhdJ, might differentiate them from other NAL subgroup members. The individual specificities of NahE and PhdJ are governed by Asn-281/Glu-285 and Ser-278/Asp-282, respectively. Finally, the PhdJ complex structure suggests a potential mechanism for hydration of substrate and subsequent retro-aldol fission. The combined findings fill a gap in our mechanistic understanding of these enzymes and their place in the NAL subgroup.


Assuntos
Aldeído Liases/química , Proteínas de Bactérias/química , Mycobacterium/enzimologia , Oxo-Ácido-Liases/química , Aldeído Liases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Modelos Moleculares , Mycobacterium/química , Mycobacterium/metabolismo , Oxo-Ácido-Liases/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência , Especificidade por Substrato
7.
J Med Chem ; 65(1): 507-519, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34931516

RESUMO

The repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity. This study rationally designed a series of α,ß-unsaturated sulfones to serve as potent and selective covalent inhibitors against SCP1. The compounds inactivate SCP1 via covalent modification of Cys181 located at the active site entrance. Cellular studies showed that the inhibitors inactivate SCP1 in a time- and dose-dependent manner with an EC50 ∼1.5 µM, reducing REST protein levels and activating specific REST-suppressed genes. These compounds represent a promising line of small-molecule inhibitors as a novel lead for glioblastoma whose growth is driven by REST transcription activity.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteínas Repressoras/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Repressoras/metabolismo
8.
Antibodies (Basel) ; 9(2)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354020

RESUMO

Driven by its successes across domains such as computer vision and natural language processing, deep learning has recently entered the field of biology by aiding in cellular image classification, finding genomic connections, and advancing drug discovery. In drug discovery and protein engineering, a major goal is to design a molecule that will perform a useful function as a therapeutic drug. Typically, the focus has been on small molecules, but new approaches have been developed to apply these same principles of deep learning to biologics, such as antibodies. Here we give a brief background of deep learning as it applies to antibody drug development, and an in-depth explanation of several deep learning algorithms that have been proposed to solve aspects of both protein design in general, and antibody design in particular.

9.
Methods Enzymol ; 607: 269-297, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30149861

RESUMO

Proline isomerization is ubiquitous in proteins and is important for regulating important processes such as folding, recognition, and enzymatic activity. In humans, peptidyl-prolyl isomerase cis-trans isomerase NIMA interacting 1 (Pin1) is responsible for mediating fast conversion between cis- and trans-conformations of serine/threonine-proline (S/T-P) motifs in a large number of cellular pathways, many of which are involved in normal development as well as progression of several cancers and diseases. One of the major processes that Pin1 regulates is phosphatase activity against the RNA polymerase II C-terminal domain (RNAPII CTD). However, molecular tools capable of distinguishing the effects of proline conformation on phosphatase function have been lacking. A key tool that allows us to understand isomeric specificity of proteins toward their substrates is the usage of proline mimicking isosteres that are locked to prevent cis/trans-proline conversion. These locked isosteres can be incorporated into standard peptide synthesis and then used in replacement of native substrates in various experimental techniques such as kinetic and thermodynamic assays as well as X-ray crystallography. We will describe the application of these chemical tools in detail using CTD phosphatases as an example. We will also discuss alternative methods for analyzing the effect of proline conformation such as 13C NMR and the biological implications of proline isomeric specificity of proteins. The chemical and analytical tools presented in this chapter are widely applicable and should help elucidate many questions on the role of proline isomerization in biology.


Assuntos
Ensaios Enzimáticos/métodos , Peptidilprolil Isomerase/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , Isótopos de Carbono/química , Cristalografia por Raios X , Ensaios Enzimáticos/instrumentação , Isoenzimas/química , Isoenzimas/metabolismo , Isomerismo , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Prolina/química , Prolina/metabolismo , Ligação Proteica , Domínios Proteicos , RNA Polimerase II/química , Especificidade por Substrato
10.
Nat Commun ; 8: 15233, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497798

RESUMO

The carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis. Mass spectrometry and NMR spectroscopy reveal that hyper-Ser5 phosphorylation transforms the local structure of this region via proline isomerization. The sequence context of this switch tunes the activity of the phosphatase Ssu72, leading to the preferential de-phosphorylation of specific heptads. Together, context-dependent conformational switches and biased dephosphorylation suggest a mechanism for the selective recruitment of cis-proline-specific regulatory factors and region-specific modulation of the CTD code that may augment gene regulation in developmentally complex organisms.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , RNA Polimerase II/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Fosforilação , Prolina/química , Prolina/genética , Prolina/metabolismo , Conformação Proteica , Proteínas Tirosina Fosfatases/metabolismo , RNA Polimerase II/química , RNA Polimerase II/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA