Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 295(12): 3965-3981, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32014994

RESUMO

Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19F NMR in conjunction with fluorinated substrate analogs to directly measure pKa values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depresses the pKa of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the pKa of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C2 component of HPAH. 19F NMR also revealed a pKa of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C2, respectively, are consistent with pKa tuning by one or more H-bonding interactions. Our implementation of 19F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.


Assuntos
Proteínas de Bactérias/metabolismo , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , 4-Hidroxibenzoato-3-Mono-Oxigenase/genética , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Oxigenases de Função Mista/genética , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fenilacetatos/química , Fenilacetatos/metabolismo , Rhodococcus/enzimologia , Especificidade por Substrato
2.
J Biosci Bioeng ; 138(1): 13-20, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614832

RESUMO

6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a derivative of glucosinolate with a six-carbon chain, is a compound found in wasabi and has diverse health-promoting properties. The biosynthesis of glucosinolates from methionine depends on a crucial step catalyzed methylthioalkylmalate synthases (MAMs), which are responsible for the generation of glucosinolates with varying chain lengths. In this study, our primary focus was the characterization of two methylthioalkyl malate synthases, MAM1-1 and MAM1-2, derived from Eutrema japonicum, commonly referred to as Japanese wasabi. Eutremajaponicum MAMs (EjMAMs) were expressed in an Escherichiacoli expression system, subsequently purified, and in vitro enzymatic activity was assayed. We explored the kinetic properties, optimal pH conditions, and cofactor preferences of EjMAMs and compared them with those of previously documented MAMs. Surprisingly, EjMAM1-2, categorized as a metallolyase family enzyme, displayed 20% of its maximum activity even in the absence of divalent metal cofactors or under high concentrations of EDTA. Additionally, we utilized AlphaFold2 to generate structural homology models of EjMAMs, and used in silico analysis and mutagenesis studies to investigate the key residues participating in catalytic activity. Moreover, we examined in vivo biosynthesis in E. coli containing Arabidopsis thaliana branched-chain amino acid transferase 3 (AtBCAT3) along with AtMAMs or EjMAMs and demonstrated that EjMAM1-2 exhibited the highest conversion rate among those MAMs, converting l-methionine to 2-(2-methylthio) ethyl malate (2-(2-MT)EM). EjMAM1-2 shows a unique property in vitro and highest activity on converting l-methionine to 2-(2-MT)EM in vivo which displays high potential for isothiocyanate biosynthesis in E. coli platform.


Assuntos
Ácido Edético , Ácido Edético/química , Cinética , Escherichia coli/genética , Escherichia coli/metabolismo , Brassicaceae/metabolismo , Brassicaceae/enzimologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Isotiocianatos/metabolismo , Isotiocianatos/química , Metionina/metabolismo , Metionina/análogos & derivados , Metionina/química , Glucosinolatos/metabolismo , Glucosinolatos/biossíntese , Glucosinolatos/química , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/química , Malatos/metabolismo , Malatos/química , Sequência de Aminoácidos , Modelos Moleculares
3.
FEBS J ; 283(5): 860-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26709612

RESUMO

3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that contains FAD as a redox-active cofactor. The enzyme catalyzes para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on the enzyme crystal structure, residue His213 is located close to the hydroxyl moiety, whereas Tyr217 is close to the carboxylate group of 3HB. Y217A and Y217S did not show any perturbation of flavin absorption upon addition of 3HB, whereas Y217F has a Kd value for 3HB binding of 7.5 mm, which is ~ 50-fold larger than that found for wild-type enzyme. The results clearly indicate that Tyr217 is necessary for substrate binding. All His213 variants can bind to 3HB with similar affinity as the wild-type enzyme and form C4a-hydroperoxy intermediate. H213S, H213D and H213E produce 2,5-DHB with yields of 28 ± 5%, 52 ± 7% and 92 ± 6%, respectively, whereas H213A cannot catalyze hydroxylation. The results indicate that the interaction between the hydroxyl group of 3HB and residue 213 is important for substrate hydroxylation. Interestingly, the hydroxylation rate constant of H213E (35 s(-1) ) is similar to that of wild-type enzyme (36 s(-1) ) and this variant has an efficiency of hydroxylation (92 ± 6%) similar to the wild-type enzyme (86 ± 2%). Difference spectra of enzyme-bound substrate suggest that 3HB binds to H213E in the phenolic form. The results indicate that His213 and Glu213 in H213E may act as a catalytic base to initiate the substrate deprotonation and facilitate the electrophilic aromatic substitution of 3HB.


Assuntos
Proteínas de Bactérias/química , Flavoproteínas/química , Histidina/química , Oxigenases de Função Mista/química , Rhodococcus/enzimologia , Tirosina/química , Catálise , Domínio Catalítico , Gentisatos/química , Hidroxilação , Cinética , Oxirredução , Oxigênio/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA