Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-21072522

RESUMO

Widely divergent vertebrates share a common central temporal mechanism for representing periodicities of acoustic waveform events. In the auditory nerve, periodicities corresponding to frequencies or rates from about 10 Hz to over 1,000 Hz are extracted from pure tones, from low-frequency complex sounds (e.g., 1st harmonic in bullfrog calls), from mid-frequency sounds with low-frequency modulations (e.g., amplitude modulation rates in cat vocalizations), and from time intervals between high-frequency transients (e.g., pulse-echo delay in bat sonar). Time locking of neuronal responses to periodicities from about 50 ms down to 4 ms or less (about 20-300 Hz) is preserved in the auditory midbrain, where responses are dispersed across many neurons with different onset latencies from 4-5 to 20-50 ms. Midbrain latency distributions are wide enough to encompass two or more repetitions of successive acoustic events, so that responses to multiple, successive periods are ongoing simultaneously in different midbrain neurons. These latencies have a previously unnoticed periodic temporal pattern that determines the specific times for the dispersed on-responses.


Assuntos
Vias Auditivas/fisiologia , Quirópteros/fisiologia , Percepção da Altura Sonora/fisiologia , Ranidae/fisiologia , Percepção do Tempo/fisiologia , Animais , Vias Auditivas/anatomia & histologia
2.
J Comp Psychol ; 122(3): 274-82, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18729655

RESUMO

Analysis of acoustic interactions between animals in active choruses is complex because of the large numbers of individuals present, their high calling rates, and the considerable numbers of vocalizations that either overlap or show close temporal alternation. The authors describe a methodology for recording chorus activity in bullfrogs (Rana catesbeiana) using multiple, closely spaced acoustic sensors that provide simultaneous estimates of sound direction and sound characteristics. This method provides estimates of location of individual callers, even under conditions of call overlap. This is a useful technique for understanding the complexity of the acoustic scene faced by animals vocalizing in groups.


Assuntos
Comunicação Animal , Acústica , Animais , Rana catesbeiana , Espectrografia do Som , Vocalização Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA