Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(32): e202305536, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278518

RESUMO

The trans-cleavage property of CRISPR-Cas12a system makes it an excellent tool for disease diagnosis. Nevertheless, most methods based on CRISPR-Cas system still require pre-amplification of the target to achieve the desired detection sensitivity. Here we generate Framework-Hotspot reporters (FHRs) with different local densities to investigate their effect on trans-cleavage activity of Cas12a. We find that the cleavage efficiency increases and the cleavage rate accelerates with increasing reporter density. We further construct a modular sensing platform with CRISPR-Cas12a-based target recognition and FHR-based signal transduction. Encouragingly, this modular platform enables sensitive (100 fM) and rapid (<15 min) detection of pathogen nucleic acids without pre-amplification, as well as detection of tumor protein markers in clinical samples. The design provides a facile strategy for enhanced trans cleavage of Cas12a, which accelerates and broadens its applications in biosensing.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Biomarcadores Tumorais , Transdução de Sinais
2.
Adv Sci (Weinh) ; 10(11): e2205217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797206

RESUMO

Point-of-care testing (POCT) can be the method of choice for detecting infectious pathogens; these pathogens are responsible for not only infectious diseases such as COVID-19, but also for certain types of cancers. For example, infections by human papillomavirus (HPV) or Helicobacter pylori (H. pylori) are the main cause of cervical and stomach cancers, respectively. COVID-19 and many cancers are treatable with early diagnoses using POCT. A variety of nucleic acid testing have been developed for use in resource-limited environments. However, questions like unintegrated nucleic acid extraction, open detection systems increase the risk of cross-contamination, and dependence on expensive equipment and alternating current (AC) power supply, significantly limit the application of POCT, especially for on-site testing. In this paper, a simple portable platform is reported capable of rapid sample-to-answer testing within 30 min based on recombinase polymerase amplification (RPA) at a lower temperature, to detect SARS-CoV-2 virus and H. pylori bacteria with a limit of detection as low as 4 × 102 copies mL-1 . The platform used a battery-powered portable reader for on-chip one-pot amplification and fluorescence detection, and can test for multiple (up to four) infectious pathogens simultaneously. This platform can provide an alternative method for fast and reliable on-site diagnostic testing.


Assuntos
COVID-19 , Doenças Transmissíveis , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Sistemas Automatizados de Assistência Junto ao Leito
3.
Small Methods ; 5(11): e2100770, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34927965

RESUMO

Immune and targeted therapy are becoming the first-line treatment for renal cell carcinoma (RCC). However, therapeutic outcomes are limited due to the low efficiency and side effect. Here, it is found that helicenes are able to exhibit an anticancer capability through changing the molecular structure from planar to nonplanar. Furthermore, the cytotoxicity in vitro and cancer inhibition ability of nonplanar helicenes increase with its aromatic rings' number. It is further demonstrated that benzo[4]helicenium shows the specific killing efficiency against the RCC cancer as compared to normal kidney cells. This is majorly originated from a more selective damage of benzo[4]helicenium for mitochondria and DNA in RCC cancer cells, not the normal kidney. The selective killing ability of benzo[4]helicenium makes it have potential to be used as a targeted drug for the precise treatment of RCC.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Neoplasias Renais/tratamento farmacológico , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Compostos Policíclicos/síntese química , Animais , Carcinoma de Células Renais/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Neoplasias Renais/genética , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , RNA-Seq , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA