Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(10): 1932-1943, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206744

RESUMO

Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.


Assuntos
Deficiência Intelectual , Animais , Ataxia/genética , DNA Complementar , Deficiências do Desenvolvimento/genética , Movimentos Oculares , Humanos , Deficiência Intelectual/genética , Proteínas de Membrana , Fosfatidilinositóis , Convulsões , Proteínas Supressoras de Tumor/genética
2.
Am J Hum Genet ; 109(4): 750-758, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202563

RESUMO

Chromatin is essentially an array of nucleosomes, each of which consists of the DNA double-stranded fiber wrapped around a histone octamer. This organization supports cellular processes such as DNA replication, DNA transcription, and DNA repair in all eukaryotes. Human histone H4 is encoded by fourteen canonical histone H4 genes, all differing at the nucleotide level but encoding an invariant protein. Here, we present a cohort of 29 subjects with de novo missense variants in six H4 genes (H4C3, H4C4, H4C5, H4C6, H4C9, and H4C11) identified by whole-exome sequencing and matchmaking. All individuals present with neurodevelopmental features of intellectual disability and motor and/or gross developmental delay, while non-neurological features are more variable. Ten amino acids are affected, six recurrently, and are all located within the H4 core or C-terminal tail. These variants cluster to specific regions of the core H4 globular domain, where protein-protein interactions occur with either other histone subunits or histone chaperones. Functional consequences of the identified variants were evaluated in zebrafish embryos, which displayed abnormal general development, defective head organs, and reduced body axis length, providing compelling evidence for the causality of the reported disorder(s). While multiple developmental syndromes have been linked to chromatin-associated factors, missense-bearing histone variants (e.g., H3 oncohistones) are only recently emerging as a major cause of pathogenicity. Our findings establish a broader involvement of H4 variants in developmental syndromes.


Assuntos
Histonas , Peixe-Zebra , Animais , Cromatina , DNA , Histonas/metabolismo , Humanos , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390279

RESUMO

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Assuntos
Encefalopatias , Peixe-Zebra , Animais , Encefalopatias/patologia , Tronco Encefálico , Cerebelo/anormalidades , Cerebelo/patologia , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mutação/genética , Malformações do Sistema Nervoso , Neurogênese/genética , Células de Purkinje/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo
4.
Glia ; 72(2): 289-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37767930

RESUMO

Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Bainha de Mielina , Oligodendroglia , Proteínas de Peixe-Zebra , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Medula Espinal/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
5.
Eur J Nutr ; 62(8): 3411-3422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665425

RESUMO

PURPOSE: This study aimed to evaluate the capacity of peppermint essential oil to improve the physical performance of runners in running protocol until exhaustion. METHODS: In a clinical, randomized, double-blind, cross-over and controlled study, fourteen male recreational runners (37.1 ± 2.0 years; 24 ± 1.1 kg/m2; 53.1 ± 1.7 mL kg min) performed two runs to exhaustion at 70% of VO2max, after intake of 500 mL of water added with 0.05 mL of peppermint essential oil (PEO) or placebo (PLA), plus 400 mL of the drink during the initial part of the exercise. Records were made of body temperature (BT), thermal sensation (TS), thermal comfort (TC), subjective perception of effort (SPE), sweat rate (SR), and urine volume and density. RESULTS: Time to exhaustion was 109.9 ± 6.9 min in PEO and 98.5 ± 6.2 min in PLA (p = 0.009; effect size: 0.826). No significant changes were observed in the values of BT, TS, TC, SPE, SR, lost body mass, and urine volume and density (p > 0.05). CONCLUSION: Peppermint essential oil added to water before and during a race significantly increases the time to exhaustion of recreational runners but without altering BT, TS, TC, or hydration status, so the mechanisms involved were not clarified in this study. BRAZILIAN REGISTRY OF CLINICAL TRIALS (REBEC): RBR-75zt25z.


Assuntos
Mentha piperita , Óleos Voláteis , Resistência Física , Corrida , Exercício Físico , Mentha piperita/química , Óleos Voláteis/administração & dosagem , Água , Humanos , Masculino , Resistência Física/efeitos dos fármacos , Adulto
6.
Hum Mutat ; 43(9): 1216-1223, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485770

RESUMO

Neuregulin 1 signals are essential for the development and function of Schwann cells, which form the myelin sheath on peripheral axons. Disruption of myelin in the peripheral nervous system can lead to peripheral neuropathy, which is characterized by reduced axonal conduction velocity and sensorimotor deficits. Charcot-Marie-Tooth disease is a group of heritable peripheral neuropathies that may be caused by variants in nearly 100 genes. Despite the evidence that Neuregulin 1 is essential for many aspects of Schwann cell development, previous studies have not reported variants in the neuregulin 1 gene (NRG1) in patients with peripheral neuropathy. We have identified a rare missense variant in NRG1 that is homozygous in a patient with sensory and motor deficits consistent with mixed axonal and de-myelinating peripheral neuropathy. Our in vivo functional studies in zebrafish indicate that the patient variant partially reduces NRG1 function. This study tentatively suggests that variants at the NRG1 locus may cause peripheral neuropathy and that NRG1 should be investigated in families with peripheral neuropathy of unknown cause.


Assuntos
Doença de Charcot-Marie-Tooth , Neuregulina-1 , Animais , Axônios , Doença de Charcot-Marie-Tooth/genética , Humanos , Bainha de Mielina , Neuregulina-1/genética , Células de Schwann , Peixe-Zebra/genética
7.
Hum Mol Genet ; 29(11): 1900-1921, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32196547

RESUMO

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.


Assuntos
Cateninas/genética , Fenda Labial/genética , Fissura Palatina/genética , Anormalidades Craniofaciais/genética , Ectrópio/genética , Cardiopatias Congênitas/genética , Anormalidades Dentárias/genética , Adolescente , Adulto , Animais , Anodontia/diagnóstico por imagem , Anodontia/genética , Anodontia/fisiopatologia , Criança , Pré-Escolar , Fenda Labial/diagnóstico por imagem , Fenda Labial/fisiopatologia , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Anormalidades Craniofaciais/diagnóstico por imagem , Anormalidades Craniofaciais/fisiopatologia , Modelos Animais de Doenças , Ectrópio/diagnóstico por imagem , Ectrópio/fisiopatologia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Masculino , Camundongos , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/fisiopatologia , Xenopus , Adulto Jovem , delta Catenina
8.
Am J Hum Genet ; 105(4): 836-843, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564437

RESUMO

Osteogenesis imperfecta (OI) comprises a genetically heterogeneous group of skeletal fragility diseases. Here, we report on five independent families with a progressively deforming type of OI, in whom we identified four homozygous truncation or frameshift mutations in MESD. Affected individuals had recurrent fractures and at least one had oligodontia. MESD encodes an endoplasmic reticulum (ER) chaperone protein for the canonical Wingless-related integration site (WNT) signaling receptors LRP5 and LRP6. Because complete absence of MESD causes embryonic lethality in mice, we hypothesized that the OI-associated mutations are hypomorphic alleles since these mutations occur downstream of the chaperone activity domain but upstream of ER-retention domain. This would be consistent with the clinical phenotypes of skeletal fragility and oligodontia in persons deficient for LRP5 and LRP6, respectively. When we expressed wild-type (WT) and mutant MESD in HEK293T cells, we detected WT MESD in cell lysate but not in conditioned medium, whereas the converse was true for mutant MESD. We observed that both WT and mutant MESD retained the ability to chaperone LRP5. Thus, OI-associated MESD mutations produce hypomorphic alleles whose failure to remain within the ER significantly reduces but does not completely eliminate LRP5 and LRP6 trafficking. Since these individuals have no eye abnormalities (which occur in individuals completely lacking LRP5) and have neither limb nor brain patterning defects (both of which occur in mice completely lacking LRP6), we infer that bone mass accrual and dental patterning are more sensitive to reduced canonical WNT signaling than are other developmental processes. Biologic agents that can increase LRP5 and LRP6-mediated WNT signaling could benefit individuals with MESD-associated OI.


Assuntos
Chaperonas Moleculares/genética , Mutação , Osteogênese Imperfeita/genética , Animais , Feminino , Genes Recessivos , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Linhagem , Fenótipo , Via de Sinalização Wnt
9.
Clin Genet ; 102(6): 494-502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36046955

RESUMO

Cerebral palsy (CP) causes neurological disability in early childhood. Hypoxic-ischaemic injury plays a major role in its aetiology, nevertheless, genetic and epigenetic factors may contribute to the clinical presentation. Mutations in ADD3 (encoding γ-adducin) gene have been described in a monogenic form of spastic quadriplegic cerebral palsy (OMIM 601568). We studied a 16-year-old male with spastic diplegia. Several investigations including neurometabolic testing, brain and spine magnetic resonance imaging (MRI) and CGH-Array were normal. Further, clinical genetics assessment and whole exome sequencing (WES) gave the diagnosis. We generated an animal model using Drosophila to study the effects of γ-adducin loss and gain of function. WES revealed a biallelic variant in the ADD3 gene, NM_016824.5(ADD3): c.1100G > A, p.(Gly367Asp). Mutations in this gene have been described as an ultra-rare autosomal recessive, which is a known form of inherited cerebral palsy. Molecular modelling suggests that this mutation leads to a loss of structural integrity of γ-adducin and is therefore expected to result in a decreased level of functional protein. Pan-neuronal over-expression or knock-down of the Drosophila ortholog of ADD3 called hts caused a reduction of life span and impaired locomotion thereby phenocopying aspects of the human disease. Our animal experiments present a starting point to understand the biological processes underpinning the clinical phenotype and pathogenic mechanisms, to gain insights into potential future methods for treating or preventing ADD3 related spastic quadriplegic cerebral palsy.


Assuntos
Paralisia Cerebral , Paraparesia Espástica , Paraplegia Espástica Hereditária , Animais , Masculino , Pré-Escolar , Humanos , Adolescente , Drosophila/genética , Paraparesia Espástica/genética , Espasticidade Muscular , Mutação , Paraplegia Espástica Hereditária/genética , Proteínas de Ligação a Calmodulina/genética
10.
Am J Med Genet A ; 188(8): 2389-2396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35567597

RESUMO

Pathogenic variants in ACTA2, encoding smooth muscle α-actin, predispose to thoracic aortic aneurysms and dissections. ACTA2 variants altering arginine 179 predispose to a more severe, multisystemic disease termed smooth muscle dysfunction syndrome (SMDS; OMIM 613834). Vascular complications of SMDS include patent ductus arteriosus (PDA) or aortopulmonary window, early-onset thoracic aortic disease (TAD), moyamoya-like cerebrovascular disease, and primary pulmonary hypertension. Patients also have dysfunction of other smooth muscle-dependent systems, including congenital mydriasis, hypotonic bladder, and gut hypoperistalsis. Here, we describe five patients with novel heterozygous ACTA2 missense variants, p.Arg179Gly, p.Met46Arg, p.Thr204Ile, p.Arg39Cys, and p.Ile66Asn, who have clinical complications that align or overlap with SMDS. Patients with the ACTA2 p.Arg179Gly and p.Thr204Ile variants display classic features of SMDS. The patient with the ACTA2 p.Met46Arg variant exhibits exclusively vascular complications of SMDS, including early-onset TAD, PDA, and moyamoya-like cerebrovascular disease. The patient with the ACTA2 p.Ile66Asn variant has an unusual vascular complication, a large fusiform internal carotid artery aneurysm. The patient with the ACTA2 p.Arg39Cys variant has pulmonary, gastrointestinal, and genitourinary complications of SMDS but no vascular manifestations. Identifying pathogenic ACTA2 variants associated with features of SMDS is critical for aggressive surveillance and management of vascular and nonvascular complications and delineating the molecular pathogenesis of SMDS.


Assuntos
Actinas , Aneurisma da Aorta Torácica , Transtornos Cerebrovasculares , Permeabilidade do Canal Arterial , Doença de Moyamoya , Actinas/genética , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Permeabilidade do Canal Arterial/genética , Heterozigoto , Humanos , Doença de Moyamoya/genética , Músculo Liso , Mutação , Fenótipo
11.
J Hum Genet ; 66(10): 995-1008, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33875766

RESUMO

Skeletal ciliopathies are a heterogenous group of disorders with overlapping clinical and radiographic features including bone dysplasia and internal abnormalities. To date, pathogenic variants in at least 30 genes, coding for different structural cilia proteins, are reported to cause skeletal ciliopathies. Here, we summarize genetic and phenotypic features of 34 affected individuals from 29 families with skeletal ciliopathies. Molecular diagnostic testing was performed using massively parallel sequencing (MPS) in combination with copy number variant (CNV) analyses and in silico filtering for variants in known skeletal ciliopathy genes. We identified biallelic disease-causing variants in seven genes: DYNC2H1, KIAA0753, WDR19, C2CD3, TTC21B, EVC, and EVC2. Four variants located in non-canonical splice sites of DYNC2H1, EVC, and KIAA0753 led to aberrant splicing that was shown by sequencing of cDNA. Furthermore, CNV analyses showed an intragenic deletion of DYNC2H1 in one individual and a 6.7 Mb de novo deletion on chromosome 1q24q25 in another. In five unsolved cases, MPS was performed in family setting. In one proband we identified a de novo variant in PRKACA and in another we found a homozygous intragenic deletion of IFT74, removing the first coding exon and leading to expression of a shorter message predicted to result in loss of 40 amino acids at the N-terminus. These findings establish IFT74 as a new skeletal ciliopathy gene. In conclusion, combined single nucleotide variant, CNV and cDNA analyses lead to a high yield of genetic diagnoses (90%) in a cohort of patients with skeletal ciliopathies.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Ciliopatias/genética , Predisposição Genética para Doença , Isoformas de Proteínas/genética , Adulto , Idoso , Doenças do Desenvolvimento Ósseo/epidemiologia , Doenças do Desenvolvimento Ósseo/patologia , Ciliopatias/epidemiologia , Ciliopatias/patologia , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto/genética , Feminino , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sequenciamento Completo do Genoma
12.
Hum Mutat ; 41(2): 403-411, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31660661

RESUMO

We present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant. Muscle-derived RNA studies of three individuals confirmed mis-splicing induced by the c.39974-11T>G variant; in-frame exon 214 skipping or use of a cryptic 3' splice-site effecting a frameshift. Confounding interpretation of pathogenicity is the absence of exons 213-217 within the described skeletal muscle TTN N2A isoform. However, RNA-sequencing from 365 adult human gastrocnemius samples revealed that 56% specimens predominantly include exons 213-217 in TTN transcripts (inclusion rate ≥66%). Further, RNA-sequencing of five fetal muscle samples confirmed that 4/5 specimens predominantly include exons 213-217 (fifth sample inclusion rate 57%). Contractures improved significantly with age for four individuals, which may be linked to decreased expression of pathogenic fetal transcripts. Our study extends emerging evidence supporting a vital developmental role for TTN isoforms containing metatranscript-only exons.


Assuntos
Processamento Alternativo , Artrogripose/diagnóstico , Artrogripose/genética , Conectina/genética , Genes Recessivos , Predisposição Genética para Doença , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação , Linhagem , Fenótipo , Radiografia
13.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31721432

RESUMO

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Assuntos
Caderinas/genética , Transtornos do Crescimento/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Síndrome , Adulto Jovem
14.
J Reprod Infant Psychol ; 37(5): 527-538, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31204493

RESUMO

Objective: In spite of the huge physical transformations that occur during pregnancy, there is little research on the role of body experience in the establishment of the mother-child relationship in pregnancy. The aim of the present study was to address this gap. Method: A sample of 330 pregnant women completed questionnaires assessing mother-child relationship (the Maternal-Fetal Attachment Scale), body experience, and other demographic and pregnancy variables. Results: Pearson's correlations revealed a number of variables were related to mother-child relationship in pregnancy, and t-tests and ANOVAs showed some between-subjects differences based on demographic variables. After controlling for these variables, regression analyses revealed that body experience was a significant predictor of both subscales of the Maternal-Fetal Attachment Scale: emotional investment in the baby and maternal role-taking. Conclusion: These findings highlight the connection between body experience and the psychological tasks of pregnancy and draw attention to new ways of assessing and improving mother-child relationships as early as in pregnancy. Results are discussed in terms of their clinical implications.


Assuntos
Imagem Corporal/psicologia , Relações Materno-Fetais/psicologia , Gestantes/psicologia , Adulto , Estudos Transversais , Feminino , Humanos , Apego ao Objeto , Portugal , Gravidez , Psicologia
15.
Am J Hum Genet ; 96(6): 955-61, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26004201

RESUMO

Arthrogryposis multiplex congenita is defined by the presence of contractures across two or more major joints and results from reduced or absent fetal movement. Here, we present three consanguineous families affected by lethal arthrogryposis multiplex congenita. By whole-exome or targeted exome sequencing, it was shown that the probands each harbored a different homozygous mutation (one missense, one nonsense, and one frameshift mutation) in GPR126. GPR126 encodes G-protein-coupled receptor 126, which has been shown to be essential for myelination of axons in the peripheral nervous system in fish and mice. A previous study reported that Gpr126(-/-) mice have a lethal arthrogryposis phenotype. We have shown that the peripheral nerves in affected individuals from one family lack myelin basic protein, suggesting that this disease in affected individuals is due to defective myelination of the peripheral axons during fetal development. Previous work has suggested that autoproteolytic cleavage is important for activating GPR126 signaling, and our biochemical assays indicated that the missense substitution (p.Val769Glu [c.2306T>A]) impairs autoproteolytic cleavage of GPR126. Our data indicate that GPR126 is critical for myelination of peripheral nerves in humans. This study adds to the literature implicating defective axoglial function as a key cause of severe arthrogryposis multiplex congenita and suggests that GPR126 mutations should be investigated in individuals affected by this disorder.


Assuntos
Artrogripose/genética , Artrogripose/patologia , Mutação de Sentido Incorreto/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Sequência de Bases , Exoma/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Fibras Nervosas Mielinizadas/patologia , Linhagem , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Crit Rev Biotechnol ; 38(5): 657-670, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28954541

RESUMO

Biofilms can cause severe problems to human health due to the high tolerance to antimicrobials; consequently, biofilm science and technology constitutes an important research field. Growing a relevant biofilm in the laboratory provides insights into the basic understanding of the biofilm life cycle including responses to antibiotic therapies. Therefore, the selection of an appropriate biofilm reactor is a critical decision, necessary to obtain reproducible and reliable in vitro results. A reactor should be chosen based upon the study goals and a balance between the pros and cons associated with its use and operational conditions that are as similar as possible to the clinical setting. However, standardization in biofilm studies is rare. This review will focus on the four reactors (Calgary biofilm device, Center for Disease Control biofilm reactor, drip flow biofilm reactor, and rotating disk reactor) approved by a standard setting organization (ASTM International) for biofilm experiments and how researchers have modified these standardized reactors and associated protocols to improve the study and understanding of medical biofilms.


Assuntos
Biofilmes , Pesquisa Biomédica , Reatores Biológicos , Modelos Biológicos , Animais , Pesquisa Biomédica/instrumentação , Pesquisa Biomédica/normas , Humanos , Técnicas Analíticas Microfluídicas , Reprodutibilidade dos Testes
17.
Biofouling ; 34(10): 1150-1160, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30663892

RESUMO

In this study, 20 heterotrophic bacteria from a minimally processed vegetables (MPV) plant were tested for their susceptibilities to five antibiotics (tetracycline, erythromycin, ampicillin, levofloxacin and ciprofloxacin), their (co)aggregation abilities and their survival under gastric simulated conditions. Peracetic acid (PA) and sodium hypochlorite (SH), both at 50 ppm, were evaluated for their abilities to control biofilms of these bacteria. In general, the Gram-negative bacteria were found to be more resistant to the selected antibiotics. Two isolates, Rhanella aquatilis and Stenotrophomonas maltophilia, demonstrated multidrug resistance. Only Rhodococcus erythropolis presented aggregation potential, while no bacterium survived under the gastric conditions. The biofilm experiments showed PA as less efficient than SH in killing biofilms and neither of the disinfectants was able to fully eliminate the biofilms. Significant regrowth was observed for most of the biofilms. The results indicate that alternative and/or complementary disinfection strategies are required to guarantee food safety.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Stenotrophomonas maltophilia/efeitos dos fármacos , Verduras/microbiologia , Biofilmes/crescimento & desenvolvimento , Sinergismo Farmacológico , Stenotrophomonas maltophilia/isolamento & purificação
18.
J Sci Food Agric ; 98(8): 2973-2980, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29171860

RESUMO

BACKGROUND: Treatments for the disinfection of irrigation water have to be evaluated by demonstration tests carried out under commercial settings taking into account not only their antimicrobial activity but also the potential phytotoxic effects on the crop. The consequences of the treatment of irrigation water with chlorine dioxide (ClO2 ) used for sprinkler irrigation of baby spinach in two commercial agricultural fields was assessed. RESULTS: Residual ClO2 levels at the sprinklers in the treated field were always below 1 mg L-1 . ClO2 treatment provoked limited but statistically significant reductions in culturable Escherichia coli counts (0.2-0.3 log reductions), but not in the viable E. coli counts in water, suggesting the presence of viable but non-culturable cells (VBNC). Although disinfected irrigation water did not have an impact on the microbial loads of Enterobacteriaceae nor on the quality characteristics of baby spinach, it caused the accumulation of chlorates (up to 0.99 mg kg-1 in plants) and the reduction of the photosynthetic efficiency of baby spinach. CONCLUSION: Low concentrations of ClO2 are effective in reducing the culturable E. coli present in irrigation water but it might induce the VBNC state. Presence of disinfection by-products and their accumulation in the crop must be considered to adjust doses in order to avoid crop damage and chemical safety risks. © 2017 Society of Chemical Industry.


Assuntos
Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Água Doce/química , Óxidos/farmacologia , Spinacia oleracea/efeitos dos fármacos , Irrigação Agrícola , Compostos Clorados/química , Desinfetantes/química , Desinfecção , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Água Doce/microbiologia , Óxidos/química , Spinacia oleracea/química , Spinacia oleracea/crescimento & desenvolvimento , Spinacia oleracea/microbiologia
19.
Hepatology ; 62(1): 198-206, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25847299

RESUMO

UNLABELLED: We investigated predictors of clinical evolution in progressive familial intrahepatic cholestasis type 2 patients and how they relate to bile salt export pump (BSEP) expression and its (re)targeting. Our retrospective study included 22 children with progressive familial intrahepatic cholestasis type 2. Clinical, biochemical, and histological characteristics were reviewed on admittance and following treatment with either ursodeoxycholic acid alone (10 mg/kg thrice daily, n = 19) or partial biliary diversion (n = 3). Immunostaining of BSEP was performed in 20 patients. Response to treatment was defined as normalization of pruritus, disappearance of jaundice, and alanine aminotransferase (ALT) levels <1.5 times the upper limit of normal. Ten of 22 patients were responders, and paired biopsies were available in six. De novo or retargeted canalicular expression of BSEP occurred in four of these six, two of whom exhibited baseline intracellular expression. Twelve of 22 were nonresponders and exhibited earlier onset of jaundice (<9 months), neonatal cholestasis, and higher ALT levels. An ALT >165 IU/L produced 72% sensitivity and 55% specificity in predicting nonresponse. Seven patients were still responding at last follow-up (median = 20 months, range 5-67 months). Three responders relapsed after 56, 72, and 82 months, respectively. Of nine surviving responders, median relapse-free survival time was 72 months (95% confidence interval 48-96 months) and 5-year relapse-free survival was 75% (95% confidence interval 33-100%). Intracellular BSEP at baseline was seen in six, of whom five were responders. Genetic analysis was performed in 17 of 22, confirming diagnosis in 13 (76%) and in four (24%) in whom only heterozygous mutation was identified. CONCLUSION: De novo or retargeted canalicular expression of BSEP occurs in treatment responders; children with late-onset presentation, lower ALT, and intracellular BSEP expression are likely to respond, at least transiently, to nontransplant treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colagogos e Coleréticos/uso terapêutico , Colestase Intra-Hepática/metabolismo , Ácido Ursodesoxicólico/uso terapêutico , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Adolescente , Adulto , Criança , Pré-Escolar , Colestase Intra-Hepática/tratamento farmacológico , Colestase Intra-Hepática/cirurgia , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
20.
PLoS Genet ; 9(6): e1003562, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23785300

RESUMO

In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which "amplifies" spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle.


Assuntos
Proteínas de Transporte/genética , Centrossomo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Meiose/genética , Oócitos/citologia , Tubulina (Proteína)/metabolismo , Animais , Cromatina/genética , Segregação de Cromossomos , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Mitose , Oócitos/crescimento & desenvolvimento , Ligação Proteica , Fuso Acromático/genética , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA