Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8015): 59-63, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750357

RESUMO

Ab initio calculations have an essential role in our fundamental understanding of quantum many-body systems across many subfields, from strongly correlated fermions1-3 to quantum chemistry4-6 and from atomic and molecular systems7-9 to nuclear physics10-14. One of the primary challenges is to perform accurate calculations for systems where the interactions may be complicated and difficult for the chosen computational method to handle. Here we address the problem by introducing an approach called wavefunction matching. Wavefunction matching transforms the interaction between particles so that the wavefunctions up to some finite range match that of an easily computable interaction. This allows for calculations of systems that would otherwise be impossible owing to problems such as Monte Carlo sign cancellations. We apply the method to lattice Monte Carlo simulations15,16 of light nuclei, medium-mass nuclei, neutron matter and nuclear matter. We use high-fidelity chiral effective field theory interactions17,18 and find good agreement with empirical data. These results are accompanied by insights on the nuclear interactions that may help to resolve long-standing challenges in accurately reproducing nuclear binding energies, charge radii and nuclear-matter saturation in ab initio calculations19,20.

2.
Phys Rev Lett ; 132(6): 062501, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394570

RESUMO

We present a parameter-free ab initio calculation of the α-particle monopole transition form factor in the framework of nuclear lattice effective field theory. We use a minimal nuclear interaction that was previously used to reproduce the ground state properties of light nuclei, medium-mass nuclei, and neutron matter simultaneously with no more than a few percent error in the energies and charge radii. The results for the monopole transition form factor are in good agreement with recent precision data from Mainz.

3.
Phys Rev Lett ; 132(23): 232502, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38905669

RESUMO

We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.

4.
Phys Rev Lett ; 132(16): 162502, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701465

RESUMO

The nuclear charge radius of ^{32}Si was determined using collinear laser spectroscopy. The experimental result was confronted with ab initio nuclear lattice effective field theory, valence-space in-medium similarity renormalization group, and mean field calculations, highlighting important achievements and challenges of modern many-body methods. The charge radius of ^{32}Si completes the radii of the mirror pair ^{32}Ar-^{32}Si, whose difference was correlated to the slope L of the symmetry energy in the nuclear equation of state. Our result suggests L≤60 MeV, which agrees with complementary observables.

6.
Phys Rev Lett ; 131(24): 242503, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181156

RESUMO

Quantum Monte Carlo simulations are powerful and versatile tools for the quantum many-body problem. In addition to the usual calculations of energies and eigenstate observables, quantum Monte Carlo simulations can in principle be used to build fast and accurate many-body emulators using eigenvector continuation or design time-dependent Hamiltonians for adiabatic quantum computing. These new applications require something that is missing from the published literature, an efficient quantum Monte Carlo scheme for computing the inner product of ground state eigenvectors corresponding to different Hamiltonians. In this work, we introduce an algorithm called the floating block method, which solves the problem by performing Euclidean time evolution with two different Hamiltonians and interleaving the corresponding time blocks. We use the floating block method and nuclear lattice simulations to build eigenvector continuation emulators for energies of ^{4}He, ^{8}Be, ^{12}C, and ^{16}O nuclei over a range of local and nonlocal interaction couplings. From the emulator data, we identify the quantum phase transition line from a Bose gas of alpha particles to a nuclear liquid.

7.
Sci Bull (Beijing) ; 69(4): 419-421, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38171963
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA