Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 36(48): 14546-14553, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33237778

RESUMO

Here we report on the development of a lab-on-chip that integrates a dense array of micrometer-sized magnetic traps, with each individual trap generating a magnetic force as high as a few nN on standard superparamagnetic beads. The composite materials embedding traps are prepared from the microstructural engineering of a mixture between iron microparticles and polydimethylsiloxane. This approach breaks with standard microfabrication technologies: it is inexpensive, relatively easy to implement, and offers the ability to modulate the magnetic properties of the composites on a customized basis. The magnetic forces acting on the superparamagnetic beads have been measured following two approaches: first, on-chip through the hydrodynamic determination of the holding magnetic force, simultaneously on a large population of traps; and second, ex situ, by atomic force microscopy equipped with a colloidal probe, on individual traps. The experimental results have been compared with calculations from finite element modeling. Despite the geometrical simplification of the modeled system, both experiments and calculations give consistent values of force, ranging from 0.5 to 5 nN. These findings show that in operando determination of forces is a robust method that gives a high throughput overview of the forces acting in the device. It further demonstrates that the use of such functional composite materials can be a relevant alternative to standard microfabrication technologies, as it leads to competitive magnetophoretic performances.

2.
Nanotechnology ; 31(39): 395503, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32521511

RESUMO

The use of contactless magnetic forces meets numerous needs in microelectromechanical systems (MEMS) or microfluidic devices. In this view, heterogeneous materials integrating magnetic nanostructures within a non-magnetic matrix such as polymer can produce local variations of magnetic field, at the sub-micrometer scale. Here we report on the synthesis of magnetic composites using electrospun nanofilaments and a polydimethylsiloxane (PDMS) matrix. Varying the precursor nature and heat treatment conditions, we obtained single phase filaments of Fe, FeNi, and MFe2O4 (M = Co, Fe, Ni). Thanks to a fine investigation of their structure and morphology, it was possible to measure from magnetically-soft (µ0HC ⩽ 5 mT) to relatively hard (µ0HC up to 93 mT, MR/MS up to 0.5) behaviors. The common one-dimensional shape of these filaments leads to an anisotropic magnetic response. This can be exploited to achieve self-organization of the filaments in arrays within the non-magnetic matrix. We show the first step towards the development of magnetically anisotropic membranes of PDMS with 0.23 wt% Fe filaments. These composite materials are promising for implementing magnetic functions in microsystems while circumventing complex micro-fabrication steps.

3.
Cells ; 10(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359904

RESUMO

Magnetophoresis-based microfluidic devices offer simple and reliable manipulation of micro-scale objects and provide a large panel of applications, from selective trapping to high-throughput sorting. However, the fabrication and integration of micro-scale magnets in microsystems involve complex and expensive processes. Here we report on an inexpensive and easy-to-handle fabrication process of micrometer-scale permanent magnets, based on the self-organization of NdFeB particles in a polymer matrix (polydimethylsiloxane, PDMS). A study of the inner structure by X-ray tomography revealed a chain-like organization of the particles leading to an array of hard magnetic microstructures with a mean diameter of 4 µm. The magnetic performance of the self-assembled micro-magnets was first estimated by COMSOL simulations. The micro-magnets were then integrated into a microfluidic device where they act as micro-traps. The magnetic forces exerted by the micro-magnets on superparamagnetic beads were measured by colloidal probe atomic force microscopy (AFM) and in operando in the microfluidic system. Forces as high as several nanonewtons were reached. Adding an external millimeter-sized magnet allowed target magnetization and the interaction range to be increased. Then, the integrated micro-magnets were used to study the magnetophoretic trapping efficiency of magnetic beads, providing efficiencies of 100% at 0.5 mL/h and 75% at 1 mL/h. Finally, the micro-magnets were implemented for cell sorting by performing white blood cell depletion.


Assuntos
Separação Celular , Separação Imunomagnética , Dispositivos Lab-On-A-Chip , Magnetismo , Polímeros/química , Humanos , Leucócitos/citologia , Microtecnologia , Tomografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA