Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(24): 13680-13688, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32493750

RESUMO

Sex determination in mammals is governed by antagonistic interactions of two genetic pathways, imbalance in which may lead to disorders/differences of sex development (DSD) in human. Among 46,XX individuals with testicular DSD (TDSD) or ovotesticular DSD (OTDSD), testicular tissue is present in the gonad. Although the testis-determining gene SRY is present in many cases, the etiology is unknown in most SRY-negative patients. We performed exome sequencing on 78 individuals with 46,XX TDSD/OTDSD of unknown genetic etiology and identified seven (8.97%) with heterozygous variants affecting the fourth zinc finger (ZF4) of Wilms' tumor 1 (WT1) (p.Ser478Thrfs*17, p.Pro481Leufs*15, p.Lys491Glu, p.Arg495Gln [x3], p.Arg495Gly). The variants were de novo in six families (P = 4.4 × 10-6), and the incidence of WT1 variants in 46,XX DSD is enriched compared to control populations (P < 1.8 × 10-4). The introduction of ZF4 mutants into a human granulosa cell line resulted in up-regulation of endogenous Sertoli cell transcripts and Wt1Arg495Gly/Arg495Gly XX mice display masculinization of the fetal gonads. The phenotype could be explained by the ability of the mutated proteins to physically interact with and sequester a key pro-ovary factor ß-CATENIN, which may lead to up-regulation of testis-specific pathway. Our data show that unlike previous association of WT1 and 46,XY DSD, ZF4 variants of WT1 are a relatively common cause of 46,XX TDSD/OTDSD. This expands the spectrum of phenotypes associated with WT1 variants and shows that the WT1 protein affecting ZF4 can function as a protestis factor in an XX chromosomal context.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/metabolismo , Testículo/metabolismo , Proteínas WT1/metabolismo , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/patologia , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/patologia , Proteínas WT1/química , Proteínas WT1/genética , Dedos de Zinco , beta Catenina/genética , beta Catenina/metabolismo
2.
Am J Med Genet A ; 185(6): 1666-1677, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33742552

RESUMO

Disorders/differences of sex development (DSD) comprise a group of congenital disorders that affect the genitourinary tract and usually involve the endocrine and reproductive system. The aim of this work was to identify genetic variants responsible for disorders of human urogenital development in a cohort of Egyptian patients. This three-year study included 225 patients with various DSD forms, referred to the genetic DSD and endocrinology clinic, National Research Centre, Egypt. The patients underwent thorough clinical examination, hormonal and imaging studies, detailed cytogenetic and fluorescence in situ hybridization analysis, and molecular sequencing of genes known to commonly cause DSD including AR, SRD5A2, 17BHSD3, NR5A1, SRY, and WT1. Whole exome sequencing (WES) was carried out for 18 selected patients. The study revealed a high rate of sex chromosomal DSD (33%) with a wide array of cytogenetic abnormalities. Sanger sequencing identified pathogenic variants in 33.7% of 46,XY patients, while the detection rate of WES reached 66.7%. Our patients showed a different mutational profile compared with that reported in other populations with a predominance of heritable DSD causes. WES identified rare and novel pathogenic variants in NR5A1, WT1, HHAT, CYP19A1, AMH, AMHR2, and FANCA and in the X-linked genes ARX and KDM6A. In addition, digenic inheritance was observed in two of our patients and was suggested to be a cause of the phenotypic variability observed in DSD.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Predisposição Genética para Doença , Genômica , Desenvolvimento Sexual/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Aciltransferases/genética , Adolescente , Adulto , Aromatase/genética , Criança , Pré-Escolar , Estudos de Coortes , Transtorno 46,XY do Desenvolvimento Sexual/fisiopatologia , Egito/epidemiologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Feminino , Histona Desmetilases/genética , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Proteínas de Membrana/genética , Mutação/genética , Fenótipo , Receptores Androgênicos/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Fatores de Transcrição SOXB1/genética , Desenvolvimento Sexual/fisiologia , Fator Esteroidogênico 1/genética , Fatores de Transcrição/genética , Proteínas WT1/genética , Sequenciamento do Exoma , Adulto Jovem
3.
Cytogenet Genome Res ; 156(2): 71-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30273929

RESUMO

We report on a female patient who was first evaluated at the age of 6 years with developmental delay, dysmorphic facial features, seizures, and autistic behavior. A brain CT showed complete agenesis of the corpus callosum, and EEG recorded bilateral epileptogenic foci. Karyotype analysis revealed 45,X,psu dic(14;X)(p11;p22). FISH using 14q and Xp subtelomeric probes, combined with a SHOX gene-specific probe, and centromere X and XIST gene analysis revealed ish psu dic(14;X)(D14S1420+; DXYS129-, SHOX-, DXZ1+, XIST+). Array CGH detected a 2-Mb loss at Xp22.33 and a 4.6-Mb gain at Xp22.2p22.12. The deletion contains 34 genes, of which CSF2RA and SHOX are OMIM morbid genes. The duplication also contains some OMIM morbid genes, of which CDKL5, NH5, RPS6KA3, and AP1S2 are the most important. The late replicating chromatin technique was used to detect the pattern of X inactivation in the normal X and in the translocated chromosome. The translocated X was found to be inactive in 70% of the studied blood lymphocytes with patchy extension of inactivation to chromosome 14. In conclusion, the phenotype of the patient may be partially affected by the haploinsufficiency of the genes that are known to escape X inactivation and that lie within the deleted region and by other deleted or duplicated genes on the abnormal X chromosome due to an alternative pattern of X inactivation. The phenotype of the patient was significantly aggravated and complicated by the functional monosomy of some genes on chromosome 14 due to partial spreading of inactivation and silencing of those genes. This case report indicates the importance of structural and functional studies and emphasizes the clinical importance of the follow-up of abnormal microarrays.

4.
Int J Toxicol ; 37(3): 234-240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554825

RESUMO

Using chromium and nickel for electroplating is important in many industries. This process induces variable adverse health effects among exposed workers. The aim of this study is to detect the genotoxic effects of combined exposure to chromium and nickel among electroplating workers. This study was conducted on 41 male workers occupationally exposed to chromium and nickel in the electroplating section of a factory compared to 41 male nonexposed individuals, where full history and clinical examination were performed. Laboratory investigations included measurement of serum chromium, nickel, 8-hydroxydeoxyguanosine (8-OHdG), and micronuclei were measured in buccal cells. In exposed workers, serum chromium ranged from 0.09 to 7.20 µg/L, serum nickel ranged from 1.20 to 28.00 µg/L, serum 8-OHdG ranged from 1.09 to12.60 ng/mL, and these results were statistically significantly increased compared to nonexposed group ( P < 0.001). Electroplaters showed higher frequencies of micronuclei in buccal cells when compared to nonexposed (ranged from 20.00 to 130.00 N/1,000 versus 2.00 to 28.00 N/1,000; P < 0.001). Linear regression models were done to detect independent predictors of 8-OHdG and micronucleus test by comparing exposed and nonexposed groups. The model found that exposure to chromium and nickel increases serum 8-OHdG by 4.754 (95% confidence interval [CI]: 3.54-5.96). The model found that exposure to chromium and nickel increases micronucleus by 35.927 (95% CI: 28.517-43.337). Serum 8-OHdG and micronucleus test in buccal cells were increased with combined exposure to chromium and nickel. The current research concluded that workers exposed to nickel and chromium in electroplating industry are at risk of significant cytogenetic damage.


Assuntos
Cromo/toxicidade , Galvanoplastia , Níquel/toxicidade , Exposição Ocupacional/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Estudos de Casos e Controles , Cromo/sangue , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Humanos , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Pessoa de Meia-Idade , Níquel/sangue
5.
Am J Med Genet A ; 170A(4): 1050-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26749249

RESUMO

Many chromosomal rearrangements that lead to copy-number gains or losses have been shown to cause distinctive and recognizable clinical phenotypes. Conventional cytogenetic analysis can detect many, but not all, rearrangements depending on its power of resolution. The wide use of whole-genome array-based comparative genomic hybridization (array-CGH) techniques has allowed the detection of novel syndromes and to establish genotype-phenotype correlations by delineating at high resolution the regions involved in specific chromosomal aberrations. We report on a two and half-year-old female patient with intellectual disability and distinctive phenotypic features resulting from a de novo duplication of about 0.3 Mb in 21q22.3 associated with duplication of about 0.3 Mb in 12p13.33. The patient's chromosomal abnormalities were identified at the cytogenetic molecular level, using SNP array analysis, while GTG banding technique revealed a normal karyotype. Clinical findings of the patient were compared with Down syndrome and 12p duplication syndrome. This study suggests that an area of contiguous genes on the distal part of chromosome 21 (21q22.3) contribute to the Down syndrome phenotype and indicates that genes in the distal region of 12p (12p13.33) account for many facial characteristics and hypotonia of trisomy 12p syndrome.


Assuntos
Cromossomos Humanos Par 12 , Cromossomos Humanos Par 21 , Estudos de Associação Genética , Fenótipo , Trissomia , Encéfalo/patologia , Pré-Escolar , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Variações do Número de Cópias de DNA , Fácies , Feminino , Humanos , Cariotipagem , Imageamento por Ressonância Magnética , Polimorfismo de Nucleotídeo Único
7.
J Mol Neurosci ; 73(7-8): 598-607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470904

RESUMO

Lysosomal acid lipase (LAL) is a necessary enzyme for the hydrolysis of both triglycerides (TGs) and cholesteryl esters (CEs) in the lysosome. Deficiency of this enzyme encoded by the lipase A (LIPA) gene leads to LAL deficiency (LAL-D). A severe disease subtype of LAL-D is known as Wolman disease (WD), present with diarrhea, hepatosplenomegaly, and adrenal calcification. Untreated patients do not survive more than a year. The aim of this study was to assess the clinical and molecular characterizations of WD patients in Egypt. A total of seven patients (from five unrelated Egyptian families) were screened by targeted next-generation sequencing (NGS), and the co-segregation of causative variants was analyzed using Sanger sequencing. Furthermore, multiple in silico analyses were performed to assess the pathogenicity of the candidate variants. Overall, we identified three diseases causing variants harbored in the LIPA gene. One of these variants is a novel missense variant (NM_000235.4: c.1122 T > G; p. His374Gln), which was classified as a likely pathogenic variant. All variants were predicted to be disease causing using in silico analyses. Our findings expand the spectrum of variants involved in WD which may help to investigate phenotype-genotype correlation and assist genetic counseling. To the best of our knowledge, this is the first clinico-genetic study carried out on Egyptian patients affected with WD.


Assuntos
Doença de Wolman , Humanos , Doença de Wolman/tratamento farmacológico , Doença de Wolman/genética , Lipase/genética , Egito , Mutação , Doença de Wolman
8.
Mol Neurobiol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153683

RESUMO

Several neurological disorders, neurodevelopmental disorders, and neurodegenerative disorders have a genetic element with various clinical presentations ranging from mild to severe presentation. Neurological disorders are rare multifactorial disorders characterized by dysfunction and degeneration of synapses, neurons, and glial cells which are essential for movement, coordination, muscle strength, sensation, and cognition. The cerebellum might be involved at any time, either during development and maturation or later in life. Herein, we describe a spectrum of NDDs and NDs in seven patients from six Egyptian families. The core clinical and radiological features of our patients included dysmorphic features, neurodevelopmental delay or regression, gait abnormalities, skeletal deformities, visual impairment, seizures, and cerebellar atrophy. Previously unreported clinical phenotypic findings were recorded. Whole-exome sequencing (WES) was performed followed by an in silico analysis of the detected genetic variants' effect on the protein structure. Three novel variants were identified in three genes MFSD8, AGTPBP1, and APTX, and other previously reported three variants have been detected in "TPP1, AGTPBP1, and PCDHGC4" genes. In this cohort, we described the detailed unique phenotypic characteristics given the identified genetic profile in patients with neurological "neurodevelopmental disorders and neurodegenerative disorders" disorders associated with cerebellar atrophy, hence expanding the mutational spectrum of such disorders.

9.
Am J Med Genet A ; 158A(7): 1594-603, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22628100

RESUMO

Isodicentric chromosome formation is the most common structural abnormality of the Y chromosome. As dicentrics are mitotically unstable, they are subsequently lost during cell division resulting in mosaicism with a 45,X cell line. We report on six patients with variable signs of disorders of sex development (DSD) including ambiguous genitalia, short stature, primary amenorrhea, and male infertility with azoospermia. Cytogenetic studies showed the presence of a sex chromosome marker in all patients; associated with a 45,X cell line in five of them. Fluorescence in situ hybridization (FISH) technique was used to determine the structure and the breakage sites of the markers that all proved to be isodicentric Y chromosomes. Three patients, were found to have similar breakpoints: idic Y(qter→ p11.32:: p11.32→ qter), two of them presented with ambiguous genitalia and were found to have ovotesticular DSD, while the third presented with short stature and hypomelanosis of Ito. One female patient presenting with primary amenorrhea, Turner manifestations and ambiguous genitalia revealed the breakpoint: idic Y (pter→q11.1::q11.1→pter). The same breakpoint was detected in a male with azoospermia but in non-mosaic form. An infant with ambiguous genitalia and mixed gonadal dysgenesis (MGD) had the breakpoint at Yq11.2: idic Y(pter→q11.2::q11.2→pter). SRY signals were detected in all patients. Sequencing of the SRY gene was carried out for three patients with normal results. This study emphasizes the importance of FISH analysis in the diagnosis of patients with DSD as well as the establishment of the relationship between phenotype and karyotype.


Assuntos
Cromossomos Humanos Y , Transtornos do Desenvolvimento Sexual/genética , Aberrações dos Cromossomos Sexuais , Adolescente , Adulto , Criança , Pré-Escolar , Bandeamento Cromossômico , Transtornos do Desenvolvimento Sexual/diagnóstico , Egito , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Cariótipo , Masculino , Fenótipo , Adulto Jovem
10.
Mol Syndromol ; 12(2): 87-95, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34012377

RESUMO

Mowat-Wilson syndrome (MWS) is a rare autosomal dominant syndrome characterized by dysmorphic features, mental retardation, and congenital heart disease (CHD). MWS results from microdeletions of chromosome 2q23 or de novo SNVs involving the ZEB2 gene. Here, we report on an Egyptian MWS patient diagnosed by chromosomal microarray (CMA). A 1-year-old male child was referred to the CHD clinic, National Research Centre, presenting with dysmorphic features and CHD. The patient was referred to the human cytogenetics department for cytogenetic analysis and for screening of subtelomere rearrangements and microdeletion loci, using MLPA, and all revealed normal results. CMA revealed an interstitial 2.27-Mb microdeletion in chromosome 2q, involving the entire ZEB2 gene and other genes. This study emphasizes the significance of CMA in the detection of microdeletions/microduplications and as a screening tool in cases presenting with CHD and extracardiac manifestations. MWS should be suspected in patients presenting with the characteristic facial dysmorphism, developmental delay, seizures, Hirschsprung disease, and congenital heart anomalies, especially those involving the pulmonary arteries or pulmonary valves. It is recommended to include the ZEB2 locus in the MLPA microdeletions probes.

11.
Mol Genet Genomic Med ; 9(2): e1546, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217222

RESUMO

BACKGROUND: Wolf-Hirschhorn syndrome (WHS) (OMIM 194190) is a multiple congenital anomalies/intellectual disability syndrome. It is caused by partial loss of genetic material from the distal portion of the short arm of chromosome. METHODS: We studied the phenotype-genotype correlation. RESULTS: We present the clinical manifestations and cytogenetic results of 10 unrelated Egyptian patients with 4p deletions. Karyotyping, FISH and MLPA was performed for screening for microdeletion syndromes. Array CGH was done for two patients. All patients exhibited the cardinal clinical manifestation of WHS. FISH proved deletion of the specific WHS locus in all patients. MLPA detected microdeletion of the specific locus in two patients with normal karyotypes, while array CGH, performed for two patients, has delineated the extent of the deleted segments and the involved genes. LETM1, the main candidate gene for the seizure phenotype, was found deleted in the two patients tested by array CGH; nevertheless, one of them did not manifest seizures. The study emphasized the previous. CONCLUSION: WHS is a contiguous gene syndrome resulting from hemizygosity of the terminal 2 Mb of 4p16.3 region. The Branchial fistula, detected in one of our patients is a new finding that, to our knowledge, was not reported.


Assuntos
Genótipo , Fenótipo , Síndrome de Wolf-Hirschhorn/genética , Proteínas de Ligação ao Cálcio/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Cariotipagem , Masculino , Proteínas de Membrana/genética , Síndrome de Wolf-Hirschhorn/patologia
12.
Mol Genet Genomic Med ; 9(11): e1829, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609792

RESUMO

BACKGROUND: This study aimed to delineate the clinical phenotype of patients with 9p deletions, pinpoint the chromosomal breakpoints, and identify the critical region for trigonocephaly, which is a frequent finding in 9p terminal deletion. METHODS: We investigated a cohort of nine patients with chromosome 9p terminal deletions who all displayed developmental delay, intellectual disability, hypotonia, and dysmorphic features. Of them, eight had trigonocephaly, seven had brain anomalies, seven had autistic manifestations, seven had fair hair, and six had a congenital heart defect (CHD). RESULTS: Karyotyping revealed 9p terminal deletion in all patients, and patients 8 and 9 had additional duplication of other chromosomal segments. We used six bacterial artificial chromosome (BAC) clones that could identify the breakpoints at 17-20 Mb from the 9p terminus. Array CGH identified the precise extent of the deletion in six patients; the deleted regions ranged from 16 to 18.8 Mb in four patients, patient 8 had an 11.58 Mb deletion and patient 9 had a 2.3 Mb deletion. CONCLUSION: The gene deletion in the 9p24 region was insufficient to cause ambiguous genitalia because six of the nine patients had normal genitalia. We suggest that the critical region for trigonocephaly lies between 11,575 and 11,587 Mb from the chromosome 9p terminus. To the best of our knowledge, this is the minimal critical region reported for trigonocephaly in 9p deletion syndrome, and it warrants further delineation.


Assuntos
Deleção Cromossômica , Craniossinostoses , Cromossomos , Craniossinostoses/genética , Egito , Humanos , Cariotipagem
13.
Mol Syndromol ; 11(5-6): 284-295, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33510599

RESUMO

Monosomy 1p36 syndrome is one of the most common submicroscopic deletion syndromes, which is characterized by the presence of delayed developmental milestones, intellectual disability, and clinically recognizable dysmorphic craniofacial features. The syndrome comprises 4 cytogenetic groups including pure terminal deletions, interstitial deletions, complex rearrangements, and derivative chromosomes 1 due to unbalanced translocations, where unbalanced translocations represent the least percentage of all cases of monosomy 1p36 (7%). Most patients with monosomy 1p36 due to an unbalanced translocation can be cytogenetically diagnosed using conventional techniques. However, chromosomal microarray analysis is mandatory in these cases to detect copy number variance and size of the deletion and allows for setting a phenotype-genotype correlation. Here, we studied a 1.5-year-old female patient who showed intellectual disability, delayed milestones, hypotonia, seizures, and characteristic dysmorphic features including brachycephaly, straight eyebrows, deep-set eyes, downslanting palpebral fissures, midface hypoplasia, depressed nasal bridge, long philtrum, and pointed chin. Conventional cytogenetic analysis (CCA), microarray study, and fluorescence in situ hybridization (FISH) analysis were performed. CCA showed a translocation involving chromosomes 1 and 21, 45,XX,der(1)t(1;21)(p36.32;q21.1)dn. Microarray analysis revealed copy number losses at both 1p36 and proximal 21q. FISH confirmed the presence of the 1p36 deletion, but was not performed for 21q. We have concluded that phenotype-genotype correlation for monosomy 1p36 syndrome can be performed for the fundamental clinical manifestations; however, the final aspect of the syndrome depends on composite factors. Monosomy 1p36 due to unbalanced translocation may present either classically or with additional altered features of various severity based on the copy number variations involving different chromosomes.

14.
Sex Dev ; 13(5-6): 221-227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32535607

RESUMO

Ovotesticular difference of sex development (OT DSD) is a rare genetic disorder with an incidence of about 1/100,000 live births. The majority of OT DSD patients show a 46,XX karyotype, others may have 46,XX/46,XY chimerism or exhibit various mosaic sex chromosome combinations, and less commonly they may have a 46,XY karyotype. The aim of this work is to report the clinical, pathological, and karyotypic variations in OT DSD patients diagnosed among a large cohort of DSD patients. The study included 10 patients thoroughly evaluated for clinical, genital, and hormonal abnormalities and subjected to imaging studies, laparoscopy with gonadal biopsy, karyotype, and FISH analysis. The current study revealed a greater percentage of mosaic cell line combinations than previously reported and showed variable cytogenetic abnormalities, including the rare isodicentric (Y)(p11.32) abnormality and X;Y translocation. The study also revealed a unique pattern of gonadal type and combination frequencies. To our knowledge, this is the first study on OT DSD patients among a large cohort of DSD patients in Egypt and the Middle East.

15.
Sex Dev ; 12(5): 211-217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30007989

RESUMO

Disorders of sex development (DSD) are conditions with an abnormal development of chromosomal, gonadal, or anatomical sex. Sex chromosome DSD involve conditions associated with either numerical or structural abnormalities of the sex chromosomes. This study included patients comprising a wide spectrum of presenting features suggestive of DSD and aimed at studying the frequency of sex chromosome abnormalities among 108 Egyptian DSD patients who presented to the Clinical Genetics and Endocrinology Clinics, National Research Centre (NRC) over the 2-year period of 2013 and 2014. The age of the studied patients ranged from 2 months to 39 years. The patients exhibited various presentations, including ambiguous genitalia, undescended testis, hypogonadism, short stature with Turner manifestations, primary or secondary amenorrhea, primary infertility, edema of the dorsum of the hands and feet, and dysmorphic features. The patients were subjected to detailed clinical examination, pubertal staging, and cytogenetic analysis. Our study reported a wide karyotypic diversity and a high frequency of sex chromosome DSD, reaching 44.44% (48/108). In conclusion, we showed a high incidence of sex chromosome DSD among Egyptian DSD patients with wide karyotype/phenotype diversity. The most frequent sex chromosome DSD detected among patients of the present study was Turner syndrome and variants (52.08%; 25/48) followed by Klinefelter syndrome and variants (43.75%; 21/48). Further long term studies are necessary for accurate detection of frequencies of different types of sex chromosomal anomalies and associated phenotypes.

16.
Sex Dev ; 11(5-6): 280-283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29320783

RESUMO

WT1 gene mutations have been described in 46,XY patients with ambiguous genitalia or complete gonadal dysgenesis with or without Wilms' tumor, nephropathy, gonadoblastoma, and other defects, e.g., cryptorchidism or hypospadias. p.R462W is a hot spot mutation in exon 9 and is the most common mutation in patients with Denys-Drash syndrome. However, in this study we report an Egyptian patient with a novel phenotype carrying the p.R462W mutation. We also review the heterogeneity of phenotypes of previously reported patients with the p.R462W (previously referred to as Arg394Trp) mutation.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Gonadoblastoma/genética , Proteínas WT1/genética , Egito , Feminino , Humanos , Lactente , Masculino , Mutação/genética
17.
Sex Dev ; 10(2): 66-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27073926

RESUMO

This study aimed at the detection of HSD17B3 gene mutations in Egyptian patients with suspected diagnosis of 46,XY DSD due to 17-ß-HSD-3 deficiency and at evaluation of phenotype/genotype relationship of these mutations. The study was conducted on 11 patients of 10 families which were provisionally diagnosed to have 17-ß-HSD-3 enzyme deficiency. Karyotyping, hormonal evaluation of testosterone, x0394;4-androstenedione, and dihydrotestosterone, and sequencing analysis of the 11 exons of the HSD17B3 gene were done. Mutations in HSD17B3 were detected in exons 2, 7, 8, 10, and 11, and 6 novel mutations were determined in exons 1, 2, 7, and 8. Two patients showed compound heterozygous mutations, while 8 families had probands with homozygous mutations. The current study shows that 17-ß-HSD-3 deficiency is not an uncommon disorder among Egyptian DSD cases. It was evidenced that the mutational profile of the disease is rather heterogeneous, relatively different from those reported in other populations, and has a high degree of novel genetic defects.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Transtorno 46,XY do Desenvolvimento Sexual/sangue , Transtorno 46,XY do Desenvolvimento Sexual/genética , Mutação/genética , 17-Hidroxiesteroide Desidrogenases/deficiência , 17-Hidroxiesteroide Desidrogenases/metabolismo , Adolescente , Adulto , Androstenodiona/sangue , Androstenodiona/metabolismo , Criança , Pré-Escolar , Di-Hidrotestosterona/sangue , Di-Hidrotestosterona/metabolismo , Transtorno 46,XY do Desenvolvimento Sexual/metabolismo , Egito , Éxons/genética , Feminino , Homozigoto , Humanos , Masculino , Testosterona/sangue , Testosterona/metabolismo , Adulto Jovem
18.
Sex Dev ; 10(3): 147-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27169744

RESUMO

The phenotypic spectrum of patients carrying NR5A1 mutations ranges from 46,XY gonadal dysgenesis to male infertility. Phenotypic variability could be due to digenic or oligogenic inheritance of pathogenic variants in other testis-determining genes. Here, exome sequencing identified 2 pathogenic de novo NR5A1 mutations in 2 patients with 46,XY gonadal dysgenesis, p.Q206Tfs*20 and p.Arg313Cys. The latter patient also carried a missense mutation in MAP3K1. Our data extend the number of NR5A1 gene mutations associated with gonadal dysgenesis. The combination of an NR5A1 mutation with a MAP3K1 variant may explain the phenotypic variability associated with NR5A1 mutations.


Assuntos
Disgenesia Gonadal 46 XY/genética , Mutação/genética , Fator Esteroidogênico 1/genética , Adulto , Pré-Escolar , Exoma/genética , Feminino , Disgenesia Gonadal/genética , Humanos , MAP Quinase Quinase Quinase 1/genética , Mutação de Sentido Incorreto/genética
19.
Sex Dev ; 9(5): 279-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26656938

RESUMO

Sex chromosome mosaicism results in a large clinical spectrum of disorders of sexual development (DSD). The percentage of 45,X cells in the developing gonad plays a major role in sex determination. However, few reports on the gonadal mosaic status have been published, and the phenotype is usually correlated with peripheral lymphocyte karyotypes, which makes the phenotype prediction imprecise. This study was conducted on 7 Egyptian DSD patients to demonstrate the effect of sex chromosome constitution of both blood lymphocytes and gonadal tissues on the phenotypic manifestations. Conventional cytogenetic and FISH analyses of blood lymphocytes were conducted, and laparoscopy with gonadal biopsy was performed for histopathologic examination and FISH analysis. Gonosomal mosaicism was detected in 3 patients who had a non-mosaic chromosome pattern in blood lymphocytes. Two patients showed the same type of sex chromosome mosaicism in both the blood and gonadal tissues but with different distributions. Two other patients revealed a non-mosaic pattern in both tissues. The present study elucidates the importance of examining sex chromosome mosaicism in gonadal tissues of DSD patients and highlights the critical role of 45,X mosaicism which can lead to serious effects during early gonadal organogenesis.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Cariotipagem , Mosaicismo , Fenótipo , Cromossomos Sexuais/genética , Adolescente , Criança , Pré-Escolar , Cromossomos Humanos X/genética , Egito , Feminino , Gônadas/embriologia , Gônadas/patologia , Gônadas/ultraestrutura , Humanos , Hibridização in Situ Fluorescente , Lactente , Linfócitos/ultraestrutura , Masculino , Organogênese , Cromossomos Sexuais/ultraestrutura , Desenvolvimento Sexual/genética
20.
Horm Res Paediatr ; 82(6): 411-4, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25034089

RESUMO

BACKGROUND: Androgen insensitivity syndrome (AIS) results from resistance of the target tissues to the effect of the androgenic hormones producing a phenotype with varying degrees of feminization ranging from male infertility to completely normal female external genitalia. Androgen receptor (AR) is a transcription factor that interacts with the androgenic steroids that act as ligands activating the AR, and via different cellular mechanisms, the activated AR binds to the DNA of target tissues to induce the desired biological changes. To date, more than 800 different mutations in the AR gene have been identified in patients with AIS and the majority of these mutations are localized in the ligand-binding domain. METHODS: Here we describe an Egyptian family with 7 affected 46,XY females with complete androgen insensitivity. RESULTS: Mutational analysis of the AR gene revealed a novel frameshift mutation in exon 8 of the gene c.2735_2736delTC. CONCLUSION: This study extends the number of AR gene mutations identified so far. Further, it confirms that AR gene mutations are the most frequent cause of 46,XY disorder of sexual development, with higher frequency in the complete phenotype.


Assuntos
Síndrome de Resistência a Andrógenos/genética , Mutação da Fase de Leitura , Disgenesia Gonadal 46 XY/genética , Receptores Androgênicos/genética , Síndrome de Resistência a Andrógenos/complicações , Pré-Escolar , Análise Mutacional de DNA , Egito , Família , Feminino , Deleção de Genes , Disgenesia Gonadal 46 XY/complicações , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA