Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674713

RESUMO

Patients affected by diabetes mellitus (DM) show diabetic encephalopathy with an increased risk of cognitive deficits, dementia and Alzheimer's disease, but the mechanisms are not fully explored. In the male animal models of DM, the development of cognitive impairment seems to be the result of the concomitance of different processes such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and aberrant synaptogenesis. However, even if diabetic encephalopathy shows some sex-dimorphic features, no observations in female rats have been so far reported on these aspects. Therefore, in an experimental model of type 1 DM (T1DM), we explored the impact of one month of pathology on memory abilities by the novel object recognition test and on neuroinflammation, synaptogenesis and mitochondrial functionality. Moreover, given that steroids are involved in memory and learning, we also analysed their levels and receptors. We reported that memory dysfunction can be associated with different features in the female hippocampus and cerebral cortex. Indeed, in the hippocampus, we observed aberrant synaptogenesis and neuroinflammation but not mitochondrial dysfunction and oxidative stress, possibly due to the results of locally increased levels of progesterone metabolites (i.e., dihydroprogesterone and allopregnanolone). These observations suggest specific brain-area effects of T1DM since different alterations are observed in the cerebral cortex.


Assuntos
Diabetes Mellitus Tipo 1 , Feminino , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Doenças Neuroinflamatórias , Aprendizagem em Labirinto , Encéfalo/metabolismo , Hipocampo/metabolismo , Estresse Oxidativo
2.
Front Neuroendocrinol ; 57: 100836, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32217094

RESUMO

The enzymatic complex 5α-reductase (5α-R) and 3α/3ß-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.


Assuntos
3-Hidroxiesteroide Desidrogenases/fisiologia , Colestenona 5 alfa-Redutase/fisiologia , Progesterona/metabolismo , Testosterona/metabolismo , 3-Hidroxiesteroide Desidrogenases/genética , Animais , Encéfalo/enzimologia , Colestenona 5 alfa-Redutase/genética , Feminino , Expressão Gênica , Humanos , Masculino , Transtornos Mentais/enzimologia , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores , Caracteres Sexuais
3.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830433

RESUMO

Steroid hormones are essential biomolecules for human physiology as they modulate the endocrine system, nervous function and behaviour. Recent studies have shown that the gut microbiota is directly involved in the production and metabolism of steroid hormones in the periphery. However, the influence of the gut microbiota on levels of steroids acting and present in the brain (i.e., neuroactive steroids) is not fully understood. Therefore, using liquid chromatography-tandem mass spectrometry, we assessed the levels of several neuroactive steroids in various brain areas and the plasma of germ-free (GF) male mice and conventionally colonized controls. The data obtained indicate an increase in allopregnanolone levels associated with a decrease in those of 5α-androstane-3α, 17ß-diol (3α-diol) in the plasma of GF mice. Moreover, an increase of dihydroprogesterone and isoallopregnanolone in the hippocampus, cerebellum, and cerebral cortex was also reported. Changes in dihydrotestosterone and 3α-diol levels were also observed in the hippocampus of GF mice. In addition, an increase in dehydroepiandrosterone was associated with a decrease in testosterone levels in the hypothalamus of GF mice. Our findings suggest that the absence of microbes affects the neuroactive steroids in the periphery and the brain, supporting the evidence of a microbiota-mediated modulation of neuroendocrine pathways involved in preserving host brain functioning.


Assuntos
Encéfalo/metabolismo , Microbioma Gastrointestinal/genética , Hormônios Esteroides Gonadais/genética , Microbiota/genética , Neuroesteroides/metabolismo , Androstano-3,17-diol/análogos & derivados , Androstano-3,17-diol/sangue , Animais , Cromatografia , Di-Hidrotestosterona/sangue , Células Germinativas/metabolismo , Hormônios Esteroides Gonadais/sangue , Masculino , Camundongos , Neuroesteroides/sangue , Pregnanolona/sangue , Pregnanolona/metabolismo , Espectrometria de Massas em Tandem , Testosterona/metabolismo
5.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256238

RESUMO

Peripheral neuropathy (PN) refers to many conditions involving damage to the peripheral nervous system (PNS). Usually, PN causes weakness, numbness and pain and is the result of traumatic injuries, infections, metabolic problems, inherited causes, or exposure to chemicals. Despite the high prevalence of PN, available treatments are still unsatisfactory. Neuroactive steroids (i.e., steroid hormones synthesized by peripheral glands as well as steroids directly synthesized in the nervous system) represent important physiological regulators of PNS functionality. Data obtained so far and here discussed, indeed show that in several experimental models of PN the levels of neuroactive steroids are affected by the pathology and that treatment with these molecules is able to exert protective effects on several PN features, including neuropathic pain. Of note, the observations that neuroactive steroid levels are sexually dimorphic not only in physiological status but also in PN, associated with the finding that PN show sex dimorphic manifestations, may suggest the possibility of a sex specific therapy based on neuroactive steroids.


Assuntos
Neuroesteroides/metabolismo , Sistema Nervoso Periférico/fisiopatologia , Animais , Humanos , Modelos Biológicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroesteroides/química , Neuroesteroides/uso terapêutico , Sistema Nervoso Periférico/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/fisiopatologia
6.
Cell Mol Neurobiol ; 39(4): 493-502, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30109515

RESUMO

Diabetes mellitus is a metabolic disease where improper glycaemic control may induce severe complications in different organs. In this review, we will discuss alterations occurring in peripheral and central nervous system of patients with type 1 (i.e., insulin dependent diabetes mellitus,) or type 2 diabetes (i.e., non-insulin dependent diabetes mellitus), as well as related experimental models. A particular focus will be on the role exerted by neuroactive steroids (i.e., important regulators of nervous functions) in the nervous damage induced by diabetes. Indeed, the nervous levels of these molecules are affected by the pathology and, in agreement, their neuroprotective effects have been reported. Interestingly, the sex is another important variable. As discussed, nervous diabetic complications show sex dimorphic features in term of incidence, functional outcomes and neuroactive steroid levels. Therefore, these features represent an interesting background for possible sex-oriented therapies with neuroactive steroids aimed to counteract nervous damage observed in diabetic pathology.


Assuntos
Diabetes Mellitus/patologia , Sistema Nervoso/patologia , Caracteres Sexuais , Esteroides/farmacologia , Animais , Feminino , Humanos , Masculino
7.
J Neurochem ; 142(3): 420-428, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28467654

RESUMO

Neuroactive steroid levels are altered in several experimental models of peripheral neuropathy, and on this basis, they have been proposed as protective agents. For the first time, the levels of these molecules were assessed here in sterol regulatory element binding protein -1c knock-out male mice (i.e., an experimental model of peripheral neuropathy) and compared with observations in wild type animals. The levels of neuroactive steroids have been evaluated by liquid chromatography-tandem mass spectrometry in plasma and sciatic nerve at 2 and 10 months of age and these analyses were implemented analyzing the gene expression of crucial steroidogenic enzymes in sciatic nerve. Data obtained at 2 months of age showed high levels of pregnenolone in sciatic nerve, associated with low levels of its first metabolite, progesterone, and further metabolites (i.e., 5α-pregnane-3,20-dione and 5α-pregnan-3ß-ol-20-one). High levels of testosterone and 17ß-estradiol were also observed. At 10 months of age, the neuroactive steroid profile showed some differences. Indeed, low levels of pregnenolone and high levels of 5α-pregnan-3α-ol-20-one and 5α-pregnan-3ß-ol-20-one were observed. The analysis of the gene expression of steroidogenic enzymes considered here generally followed these changes. Interestingly, the levels of pregnenolone and progesterone were unmodified in plasma suggesting a specific effect of sterol regulatory element binding protein-1c on neurosteroidogenesis. Because this peripheral neuropathy is due to altered fatty acid biosynthesis, data reported here support the belief that the cross-talk between this biosynthetic pathway and neuroactive steroids may represent a possible therapeutic strategy for peripheral neuropathy.


Assuntos
Nervo Isquiático/metabolismo , Esteroides/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Experimental/metabolismo , Camundongos Knockout , Progesterona/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/deficiência , Testosterona/metabolismo
8.
Neuroendocrinology ; 103(6): 746-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26646518

RESUMO

The enzymatic conversion of progesterone and testosterone by the enzyme 5alpha-reductase exerts a crucial role in the control of nervous function. The effects of finasteride in the brain, an inhibitor of this enzyme used for the treatment of human benign prostatic hyperplasia and androgenic alopecia, have been poorly explored. Therefore, the effects of a subchronic treatment with finasteride at low doses (3 mg/kg/day) and the consequences of its withdrawal on neuroactive steroid levels in plasma, cerebrospinal fluid and some brain regions as well as on the expression of classical and non-classical steroid receptors have been evaluated in male rats. After subchronic treatment (i.e., for 20 days) the following effects were detected: (i) depending on the compartment considered, alteration in the levels of neuroactive steroids, not only in 5alpha-reduced metabolites but also in its precursors and in neuroactive steroids from other steroidogenic pathways and (ii) an upregulation of the androgen receptor in the cerebral cortex and beta3 subunit of the GABA-A receptor in the cerebellum. One month after the last treatment (i.e., withdrawal period), some of these effects persisted (i.e., the upregulation of the androgen receptor in the cerebral cortex, an increase of dihydroprogesterone in the cerebellum, a decrease of dihydrotestosterone in plasma). Moreover, other changes in neuroactive steroid levels, steroid receptors (i.e., an upregulation of the estrogen receptor alpha and a downregulation of the estrogen receptor beta in the cerebral cortex) and GABA-A receptor subunits (i.e., a decrease of alpha 4 and beta 3 mRNA levels in the cerebral cortex) were detected. These findings suggest that finasteride treatment may have broad consequences for brain function.


Assuntos
Antineoplásicos/farmacologia , Encéfalo/efeitos dos fármacos , Finasterida/farmacologia , Receptores de Esteroides/metabolismo , Esteroides/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Cromatografia Líquida , Humanos , Masculino , Próstata/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Esteroides/genética , Espectrometria de Massas em Tandem , Testículo/efeitos dos fármacos
9.
Rev Endocr Metab Disord ; 16(3): 177-98, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296373

RESUMO

Steroids are important physiological orchestrators of endocrine as well as peripheral and central nervous system functions. One of the key processes for regulation of these molecules lies in their enzymatic processing by a family of 5α-reductase (5α-Rs) isozymes. By catalyzing a key rate-limiting step in steroidogenesis, this family of enzymes exerts a crucial role not only in the physiological control but also in pathological events. Indeed, both 5α-R inhibition and supplementation of 5α-reduced metabolites are currently used or have been proposed as therapeutic strategies for a wide array of pathological conditions. In particular, the potent 5α-R inhibitors finasteride and dutasteride are used in the treatments of benign prostatic hyperplasia (BPH), as well as in male pattern hair loss (MPHL) known as androgenetic alopecia (AGA). Recent preclinical and clinical findings indicate that 5α-R inhibitors evoke not only beneficial, but also adverse effects. Future studies should investigate the biochemical and physiological mechanisms that underlie the persistence of the adverse sexual side effects to determine why a subset of patients is afflicted with such persistence or irreversible adverse effects. Also a better focus of clinical research is urgently needed to better define those subjects who are likely to be adversely affected by such agents. Furthermore, research on the non-sexual adverse effects such as diabetes, psychosis, depression, and cognitive function are needed to better understand the broad spectrum of the effects these drugs may elicit during their use in treatment of AGA or BPH. In this review, we will summarize the state of art on this topic, overview the key unresolved questions that have emerged on the pharmacological targeting of these enzymes and their products, and highlight the need for further studies to ascertain the severity and duration of the adverse effects of 5α-R inhibitors, as well as their biological underpinnings.


Assuntos
Inibidores de 5-alfa Redutase/efeitos adversos , Inibidores de 5-alfa Redutase/uso terapêutico , Alopecia/tratamento farmacológico , Animais , Sistema Nervoso Central/fisiologia , Colestenona 5 alfa-Redutase/deficiência , Colestenona 5 alfa-Redutase/fisiologia , Transtornos Cognitivos/induzido quimicamente , Depressão/induzido quimicamente , Diabetes Mellitus/induzido quimicamente , Dutasterida/efeitos adversos , Dutasterida/uso terapêutico , Finasterida/efeitos adversos , Finasterida/uso terapêutico , Humanos , Masculino , Hiperplasia Prostática/tratamento farmacológico , Neoplasias da Próstata/prevenção & controle , Psicoses Induzidas por Substâncias , Disfunções Sexuais Fisiológicas/induzido quimicamente , Esteroides/biossíntese
10.
Neuroendocrinology ; 101(4): 296-308, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25765436

RESUMO

Multiple sclerosis is a chronic inflammatory disease affecting the central nervous system. As reported by clinical observations, variation in hormonal levels might alter disease susceptibility and progression. Specifically, decreased levels of testosterone in males are reported to be permissive for disease onset. Accordingly, testosterone seems to exert protective effects in experimental autoimmune encephalomyelitis (EAE). In this context, it is important to highlight that testosterone is further metabolized into 17ß-estradiol or dihydrotestosterone (DHT). In this study, we aimed to explore the protective effects of DHT treatment in EAE Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction showed that DHT exerts a beneficial effect on clinical scores, coupled with decreased gliosis (i.e. glial fibrillary acidic protein and major histocompatibility complex of class II staining) and inflammation (i.e. translocator protein 18 kDa, interleukin-1ß, Toll-like receptor 4 and nuclear factor-κB expression) in the spinal cord. Moreover, parameters linked to oxidative stress and tissue damage, like thiobarbituric acid-reactive substance levels and Bcl-2-associated X protein expression, and to mitochondrial activity (i.e. content of mitochondrial DNA and proteins), were improved after DHT administration. This neuroactive steroid may be further metabolized into 3α- or 3ß-diol. However, assessment of the levels of these metabolites after DHT treatment seems to suggest that the protective effects observed here are due to DHT itself. Altogether, the present results indicate that DHT was effective in reducing the severity of chronic EAE and, consequently, may represent an interesting perspective for multiple sclerosis treatment.


Assuntos
Di-Hidrotestosterona/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Doença Crônica , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Gliose/tratamento farmacológico , Gliose/patologia , Gliose/fisiopatologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Ratos , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
11.
J Neurochem ; 130(4): 591-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24766130

RESUMO

Neuroactive steroid family includes molecules synthesized in peripheral glands (i.e., hormonal steroids) and directly in the nervous system (i.e., neurosteroids) which are key regulators of the nervous function. As already reported in clinical and experimental studies, neurodegenerative diseases affect the levels of neuroactive steroids. However, a careful analysis comparing the levels of these molecules in cerebrospinal fluid (CSF) and in plasma of multiple sclerosis (MS) patients is still missing. To this aim, the levels of neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in CSF and plasma of male adults affected by Relapsing-Remitting MS and compared with those collected in control patients. An increase in pregnenolone and isopregnanolone levels associated with a decrease in progesterone metabolites, dihydroprogesterone, and tetrahydroprogesterone was observed in CSF of MS patients. Moreover, an increase of 5α-androstane-3α,17ß-diol and of 17ß-estradiol levels associated with a decrease of dihydrotestosterone also occurred. In plasma, an increase in pregnenolone, progesterone, and dihydrotestosterone and a decrease in dihydroprogesterone and tetrahydroprogesterone levels were reported. This study shows for the first time that the levels of several neuroactive steroids, and particularly those of progesterone and testosterone metabolites, are deeply affected in CSF of relapsing-remitting MS male patients. We here demonstrated that, the cerebrospinal fluid and plasma levels of several neuroactive steroids are modified in relapsing remitting multiple sclerosis male patients. Interestingly, we reported for the first time that, the levels of progesterone and testosterone metabolites are deeply affected in cerebrospinal fluid. These findings may have an important relevance in therapeutic and/or diagnostic field of multiple sclerosis.


Assuntos
Esclerose Múltipla/sangue , Esclerose Múltipla/líquido cefalorraquidiano , Esteroides/sangue , Esteroides/líquido cefalorraquidiano , Adulto , Barreira Hematoencefálica/patologia , Calibragem , Cromatografia Líquida de Alta Pressão , Humanos , Focalização Isoelétrica , Masculino , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Punção Espinal , Espectrometria de Massas em Tandem
12.
Andrology ; 12(3): 674-681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37621185

RESUMO

Despite its efficacy for treating androgenetic alopecia, finasteride, an inhibitor of 5α-reductase (i.e., the enzyme converting testosterone, T, into dihydrotestosterone, DHT), is associated with several side effects including sexual dysfunction (e.g., erectile dysfunction). These side effects may persist after drug suspension, inducing the so-called post-finasteride syndrome (PFS). The effects of subchronic treatment with finasteride (i.e., 20 days) and its withdrawal (i.e., 1 month) in rat corpus cavernosum have been explored here. Data obtained show that the treatment was able to decrease the levels of the enzyme 5α-reductase type II in the rat corpus cavernosum with increased T and decreased DHT levels. This local change in T metabolism was linked to mechanisms associated with erectile dysfunction. Indeed, by targeted metabolomics, we reported a decrease in the nitric oxide synthase (NOS) activity, measured by the citrulline/arginine ratio and confirmed by the decrease in NO2 levels, and a decrease in ornithine transcarbamylase (OTC) activity, measured by citrulline/ornithine ratio. Interestingly, the T levels are negatively correlated with NOS activity, while those of DHT are positively correlated with OTC activity. Finasteride treatment also induced alterations in the levels of other molecules involved in the control of penile erection, such as norepinephrine and its metabolite, epinephrine. Indeed, plasma levels of norepinephrine and epinephrine were significantly increased and decreased, respectively, suggesting an impairment of these mediators. Interestingly, these modifications were restored by suspension of the drug. Altogether, the results reported here indicate that finasteride treatment, but not its withdrawal, affects T metabolism in the rat corpus cavernosum, and this alteration was linked to mechanisms associated with erectile dysfunction. Data here reported could also suggest that the PFS sexual side effects are more related to dysfunction in a sexual central control rather than peripheral compromised condition.


Assuntos
Disfunção Erétil , Finasterida , Masculino , Humanos , Ratos , Animais , Finasterida/efeitos adversos , Disfunção Erétil/tratamento farmacológico , Citrulina , Di-Hidrotestosterona , Epinefrina , Norepinefrina , Inibidores de 5-alfa Redutase/efeitos adversos
13.
J Steroid Biochem Mol Biol ; 243: 106590, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053702

RESUMO

Neuroactive steroids (i.e., sex steroid hormones and neurosteroids) are important physiological regulators of nervous function and potential neuroprotective agents for neurodegenerative and psychiatric disorders. Sex is an important component of such effects. However, even if fluctuations in sex steroid hormone level during the menstrual cycle are associated with neuropathological events in some women, the neuroactive steroid pattern in the brain across the ovarian cycle has been poorly explored. Therefore, we assessed the levels of pregnenolone, progesterone, and its metabolites (i.e., dihydroprogesterone, allopregnanolone and isoallopregnanolone), dehydroepiandrosterone, testosterone and its metabolites (i.e., dihydrotestosterone, 3α-diol and 17ß-estradiol) across the rat ovarian cycle to determine whether their plasma fluctuations are similar to those occurring in the central (i.e., hippocampus and cerebral cortex) and peripheral (i.e., sciatic nerve) nervous system. Data obtained indicate that the plasma pattern of these molecules generally does not fully reflect the events occurring in the nervous system. In addition, for some neuroactive steroid levels, the pattern is not identical between the two brain regions and between the brain and peripheral nerves. Indeed, with the exception of progesterone, all other neuroactive steroids assessed here showed peculiar regional differences in their pattern of fluctuation in the nervous system during the estrous cycle. These observations may have important diagnostic and therapeutic consequences for neuropathological events influenced by the menstrual cycle.

14.
J Steroid Biochem Mol Biol ; 241: 106514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38554982

RESUMO

An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.


Assuntos
Hipocampo , Hipotálamo , Cromossomos Sexuais , Animais , Masculino , Feminino , Hipotálamo/metabolismo , Hipocampo/metabolismo , Cromossomos Sexuais/genética , Camundongos , Hormônios Gonadais/metabolismo , Hormônios Gonadais/sangue , Caracteres Sexuais , Neuroesteroides/metabolismo , Neuroesteroides/sangue , Genótipo , Camundongos Endogâmicos C57BL , Testosterona/sangue , Testosterona/metabolismo
15.
J Sex Med ; 10(10): 2598-603, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23890183

RESUMO

INTRODUCTION: Observations performed in a subset of subjects treated with finasteride (an inhibitor of the enzyme 5α-reductase) for male pattern hair loss seem to indicate that sexual dysfunction as well as anxious/depressive symptomatology may occur at the end of the treatment and continue after discontinuation. AIM: A possible hypothesis to explain depression symptoms after finasteride treatment might be impairment in the levels of neuroactive steroids. Therefore, neuroactive steroid levels were evaluated in paired plasma and cerebrospinal fluid samples obtained from male patients who received finasteride for the treatment of androgenic alopecia and who, after drug discontinuation, still show long-term sexual side effects as well as anxious/depressive symptomatology. METHODS: The levels of neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in three postfinasteride patients and compared to those of five healthy controls. MAIN OUTCOME MEASURES: Neuroactive steroid levels in plasma and cerebrospinal fluid of postfinasteride patients and healthy controls. RESULTS: At the examination, the three postfinasteride patients reported muscular stiffness, cramps, tremors, and chronic fatigue in the absence of clinical evidence of any muscular disorder or strength reduction. Severity and frequency of the anxious/depressive symptoms were quite variable; overall, all the subjects had a fairly complex and constant neuropsychiatric pattern. Assessment of neuroactive steroid levels in patients showed some interindividual differences. However, the most important finding was the comparison of their neuroactive steroid levels with those of healthy controls. Indeed, decreased levels of tetrahydroprogesterone, isopregnanolone and dihydrotestosterone and increased levels of testosterone and 17ß-estradiol were reported in cerebrospinal fluid of postfinasteride patients. Moreover, decreased levels of dihydroprogesterone and increased levels of 5α-androstane-3α,17ß-diol and 17ß-estradiol were observed in plasma. CONCLUSION: The present observations confirm that an impairment of neuroactive steroid levels, associated with depression symptoms, is still present in androgenic alopecia patients treated with finasteride despite the discontinuation of the treatment.


Assuntos
Inibidores de 5-alfa Redutase/efeitos adversos , Alopecia/tratamento farmacológico , Ansiedade/induzido quimicamente , Depressão/induzido quimicamente , Finasterida/efeitos adversos , Comportamento Sexual/efeitos dos fármacos , Esteroides/líquido cefalorraquidiano , Inibidores de 5-alfa Redutase/administração & dosagem , Inibidores de 5-alfa Redutase/líquido cefalorraquidiano , Adulto , Ansiedade/líquido cefalorraquidiano , Ansiedade/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Cromatografia Líquida , Depressão/líquido cefalorraquidiano , Depressão/diagnóstico , Esquema de Medicação , Feminino , Finasterida/administração & dosagem , Finasterida/líquido cefalorraquidiano , Humanos , Masculino , Esteroides/sangue , Espectrometria de Massas em Tandem , Fatores de Tempo , Resultado do Tratamento
16.
Biomolecules ; 13(9)2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759725

RESUMO

The pathological consequences of type 2 diabetes mellitus (T2DM) also involve the central nervous system; indeed, T2DM patients suffer from learning and memory disabilities with a higher risk of developing dementia. Although several factors have been proposed as possible contributors, how neuroactive steroids and the gut microbiome impact brain pathophysiology in T2DM remain unexplored. On this basis, in male Zucker diabetic fatty (ZDF) rats, we studied whether T2DM alters memory abilities using the novel object recognition test, neuroactive steroid levels by liquid chromatography-tandem mass spectrometry, hippocampal parameters using molecular assessments, and gut microbiome composition using 16S next-generation sequencing. Results obtained reveal that T2DM worsens memory abilities and that these are correlated with increased levels of corticosterone in plasma and with a decrease in allopregnanolone in the hippocampus, where neuroinflammation, oxidative stress, and mitochondrial dysfunction were reported. Interestingly, our analysis highlighted a small group of taxa strictly related to both memory impairment and neuroactive steroid levels. Overall, the data underline an interesting role for allopregnanolone and microbiota that may represent candidates for the development of therapeutic strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Neuroesteroides , Humanos , Ratos , Animais , Masculino , Ratos Zucker , Pregnanolona
17.
Neuropharmacology ; 226: 109405, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572179

RESUMO

Sex steroid hormones are not only synthesized from the gonads but also by other tissues, such as the brain (i.e., neurosteroids) and colon (i.e., gut steroids). Gut microbiota can be shaped from sex steroid hormones synthesized from the gonads and locally interacts with gut steroids as in turn modulates neurosteroids. Type 1 diabetes mellitus (T1DM) is characterized by dysbiosis and also by diabetic encephalopathy. However, the interactions of players of gut-brain axis, such as gut steroids, gut permeability markers and microbiota, have been poorly explored in this pathology and, particularly in females. On this basis, we have explored, in streptozotocin (STZ)-induced adult female rats, whether one month of T1DM may alter (I) gut microbiome composition and diversity by 16S next-generation sequencing, (II) gut steroid levels by liquid chromatography-tandem mass spectrometry, (III) gut permeability markers by gene expression analysis, (IV) cognitive behavior by the novel object recognition (NOR) test and whether correlations among these aspects may occur. Results obtained reveal that T1DM alters gut ß-, but not α-diversity. The pathology is also associated with a decrease and an increase in colonic pregnenolone and allopregnanolone levels, respectively. Additionally, diabetes alters gut permeability and worsens cognitive behavior. Finally, we reported a significant correlation of pregnenolone with Blautia, claudin-1 and the NOR index and of allopregnanolone with Parasutterella, Gammaproteobacteria and claudin-1. Altogether, these results suggest new putative roles of these two gut steroids related to cognitive deficit and dysbiosis in T1DM female experimental model. This article is part of the Special Issue on "Microbiome & the Brain: Mechanisms & Maladies".


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Neuroesteroides , Ratos , Feminino , Animais , Disbiose , Claudina-1 , Pregnanolona , Hormônios Esteroides Gonadais/metabolismo , Cognição , Permeabilidade , Pregnenolona
18.
Exp Neurol ; 363: 114370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878398

RESUMO

Growing preclinical and clinical evidence highlights neurosteroid pathway imbalances in Parkinson's Disease (PD) and L-DOPA-induced dyskinesias (LIDs). We recently reported that 5α-reductase (5AR) inhibitors dampen dyskinesias in parkinsonian rats; however, unraveling which specific neurosteroid mediates this effect is critical to optimize a targeted therapy. Among the 5AR-related neurosteroids, striatal pregnenolone has been shown to be increased in response to 5AR blockade and decreased after 6-OHDA lesions in the rat PD model. Moreover, this neurosteroid rescued psychotic-like phenotypes by exerting marked antidopaminergic activity. In light of this evidence, we investigated whether pregnenolone might dampen the appearance of LIDs in parkinsonian drug-naïve rats. We tested 3 escalating doses of pregnenolone (6, 18, 36 mg/kg) in 6-OHDA-lesioned male rats and compared the behavioral, neurochemical, and molecular outcomes with those induced by the 5AR inhibitor dutasteride, as positive control. The results showed that pregnenolone dose-dependently countered LIDs without affecting L-DOPA-induced motor improvements. Post-mortem analyses revealed that pregnenolone significantly prevented the increase of validated striatal markers of dyskinesias, such as phospho-Thr-34 DARPP-32 and phospho-ERK1/2, as well as D1-D3 receptor co-immunoprecipitation in a fashion similar to dutasteride. Moreover, the antidyskinetic effect of pregnenolone was paralleled by reduced striatal levels of BDNF, a well-established factor associated with the development of LIDs. In support of a direct pregnenolone effect, LC/MS-MS analyses revealed that striatal pregnenolone levels strikingly increased after the exogenous administration, with no significant alterations in downstream metabolites. All these data suggest pregnenolone as a key player in the antidyskinetic properties of 5AR inhibitors and highlight this neurosteroid as an interesting novel tool to target LIDs in PD.


Assuntos
Discinesia Induzida por Medicamentos , Neuroesteroides , Doença de Parkinson , Masculino , Ratos , Animais , Levodopa/efeitos adversos , Doença de Parkinson/patologia , Dutasterida/metabolismo , Dutasterida/farmacologia , Dutasterida/uso terapêutico , Oxidopamina/toxicidade , Neuroesteroides/metabolismo , Neuroesteroides/farmacologia , Neuroesteroides/uso terapêutico , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
19.
J Neuroendocrinol ; 34(2): e12996, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34189791

RESUMO

Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.


Assuntos
Neuroesteroides , Pregnanolona , Progesterona
20.
Biomolecules ; 12(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358917

RESUMO

The treatment with finasteride (i.e., an inhibitor of 5α-reductase) may be associated with different side effects (i.e., depression, anxiety, cognitive impairment and sexual dysfunction) inducing the so-called post finasteride syndrome (PFS). Moreover, previous observations in PFS patients and an experimental model showed alterations in gut microbiota populations, suggesting an inflammatory environment. To confirm this hypothesis, we have explored the effect of chronic treatment with finasteride (i.e., for 20 days) and its withdrawal (i.e., for 1 month) on the levels of steroids, neurotransmitters, pro-inflammatory cytokines and gut permeability markers in the colon of adult male rat. The obtained data demonstrate that the levels of allopregnanolone (ALLO) decreased after finasteride treatment and after its withdrawal. Following the drug suspension, the decrease in ALLO levels correlates with an increase in IL-1ß and TNF-α, serotonin and a decrease in dopamine. Importantly, ALLO treatment is able to counteract some of these alterations. The relation between ALLO and GABA-A receptors and/or pregnenolone (ALLO precursor) could be crucial in their mode of action. These observations provide an important background to explore further the protective effect of ALLO in the PFS experimental model and the possibility of its translation into clinical therapy.


Assuntos
Finasterida , Pregnanolona , Animais , Ratos , Masculino , Finasterida/farmacologia , Pregnanolona/farmacologia , Pregnenolona , Receptores de GABA-A , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA