Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38893525

RESUMO

Oral anticoagulant therapy (OAT) for managing atrial fibrillation (AF) encompasses vitamin K antagonists (VKAs, such as warfarin), which was the mainstay of anticoagulation therapy before 2010, and direct-acting oral anticoagulants (DOACs, namely dabigatran etexilate, rivaroxaban, apixaban, edoxaban), approved for the prevention of AF stroke over the last thirteen years. Due to the lower risk of major bleeding associated with DOACs, anticoagulant switching is a common practice in AF patients. Nevertheless, there are issues related to OAT switching that still need to be fully understood, especially for patients in whom AF and heart failure (HF) coexist. Herein, the effective impact of the therapeutic switching from warfarin to DOACs in HF patients with AF, in terms of cardiac remodeling, clinical status, endothelial function and inflammatory biomarkers, was assessed by a machine learning (ML) analysis of a clinical database, which ultimately shed light on the real positive and pleiotropic effects mediated by DOACs in addition to their anticoagulant activity.


Assuntos
Anticoagulantes , Fibrilação Atrial , Insuficiência Cardíaca , Aprendizado de Máquina , Humanos , Fibrilação Atrial/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Anticoagulantes/uso terapêutico , Anticoagulantes/administração & dosagem , Anticoagulantes/farmacologia , Administração Oral , Masculino , Feminino , Idoso , Doença Crônica , Varfarina/uso terapêutico
2.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902405

RESUMO

Ultrasonography is a safe, non-invasive imaging technique used in several fields of medicine, offering the possibility to longitudinally monitor disease progression and treatment efficacy over time. This is particularly useful when a close follow-up is required, or in patients with pacemakers (not suitable for magnetic resonance imaging). By virtue of these advantages, ultrasonography is commonly used to detect multiple skeletal muscle structural and functional parameters in sports medicine, as well as in neuromuscular disorders, e.g., myotonic dystrophy and Duchenne muscular dystrophy (DMD). The recent development of high-resolution ultrasound devices allowed the use of this technique in preclinical settings, particularly for echocardiographic assessments that make use of specific guidelines, currently lacking for skeletal muscle measurements. In this review, we describe the state of the art for ultrasound skeletal muscle applications in preclinical studies conducted in small rodents, aiming to provide the scientific community with necessary information to support an independent validation of these procedures for the achievement of standard protocols and reference values useful in translational research on neuromuscular disorders.


Assuntos
Distrofia Muscular de Duchenne , Doenças Neuromusculares , Humanos , Músculo Esquelético , Ultrassonografia , Ecocardiografia
3.
Physiol Genomics ; 49(6): 306-317, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455309

RESUMO

The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca2+). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory ß- and γ-subunits. The association of the α-subunit with ß- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the KCNMA1/slo1 gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Músculo Esquelético/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Células HEK293 , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Células MCF-7 , Camundongos , Modelos Biológicos , Estrutura Molecular
4.
Biomedicines ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37626795

RESUMO

Brugada syndrome (BrS) is an inherited cardiac channelopathy first diagnosed in 1992 but still considered a challenging disease in terms of diagnosis, arrhythmia risk prediction, pathophysiology and management. Despite about 20% of individuals carrying pathogenic variants in the SCN5A gene, the identification of a polygenic origin for BrS and the potential role of common genetic variants provide the basis for applying polygenic risk scores for individual risk prediction. The pathophysiological mechanisms are still unclear, and the initial thinking of this syndrome as a primary electrical disease is evolving towards a partly structural disease. This review focuses on the main scientific advancements in the identification of biomarkers for diagnosis, risk stratification, pathophysiology and therapy of BrS. A comprehensive model that integrates clinical and genetic factors, comorbidities, age and gender, and perhaps environmental influences may provide the opportunity to enhance patients' quality of life and improve the therapeutic approach.

5.
Int J Cardiol Heart Vasc ; 49: 101303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076346

RESUMO

Background: Spontaneous coronary artery dissection (SCAD) is a relatively rare condition affecting predominantly young adults, with a prevalence of female sex. The best management of SCAD is still unclear and not adequately evidence-based both in the acute phase but especially over the long-term. We therefore aimed to evaluate the impact of medical therapy usually adopted for coronary artery disease on long-term outcome in SCAD patients. Methods: We performed a meta-regression analysis including all the studies evaluating the long-term outcome of patients affected by SCAD. We used long-term mortality, recurrent SCAD, admission for angina and major adverse cardio-vascular events (MACE) as dependent variables and the rates of discharge drug rates (beta-blockers, statins, renin-angiotensin-aldosterone system inhibitors, aspirin, dual antiplatelet therapy (DAPT)) as independent variables. Results: Fourteen observational studies were included with a long-term follow-up of 3.5 ± 1.7 years. No statistically significant correlations between drug therapy (beta-blockers, statins, calcium channel blockers, nitrates, renin-angiotensin-aldosterone inhibitors) and mortality, MACE, admission for angina, and SCAD recurrence were found. Higher aspirin use rates were significantly correlated with lower admission rates for angina (p < 0.05); DAPT, however, showed a borderline correlation with higher rates of SCAD recurrence (p = 0.068). Conclusions: In a meta-regression analysis including observational studies aspirin use rates correlated with lower long-term rates of admission for angina, while a borderline correlation between DAPT and rates of SCAD recurrence was found. Other drugs usually used for the treatment of coronary artery disease do not seem to impact long-term outcome of SCAD patients.

6.
Nutrients ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36678201

RESUMO

In age-related sarcopenia, the gradual loss of skeletal muscle mass, function and strength is underpinned by an imbalanced rate of protein synthesis/breakdown. Hence, an adequate protein intake is considered a valuable strategy to mitigate sarcopenia. Here, we investigated the effects of a 12-week oral supplementation with branched-chain amino acids (BCAAs: leucine, isoleucine, and valine) with recognized anabolic properties, in 17-month-old (AGED) C57BL/6J male mice. BCAAs (2:1:1) were formulated in drinking water, alone or plus two L-Alanine equivalents (2ALA) or dipeptide L-Alanyl-L-Alanine (Di-ALA) to boost BCAAs bioavailability. Outcomes were evaluated on in/ex vivo readouts vs. 6-month-old (ADULT) mice. In vivo hind limb plantar flexor torque was improved in AGED mice treated with BCAAs + Di-ALA or 2ALA (recovery score, R.S., towards ADULT: ≥20%), and all mixtures significantly increased hind limb volume. Ex vivo, myofiber cross-sectional areas were higher in gastrocnemius (GC) and soleus (SOL) muscles from treated mice (R.S. ≥ 69%). Contractile indices of isolated muscles were improved by the mixtures, especially in SOL muscle (R.S. ≥ 20%). The latter displayed higher mTOR protein levels in mice supplemented with 2ALA/Di-ALA-enriched mixtures (R.S. ≥ 65%). Overall, these findings support the usefulness of BCAAs-based supplements in sarcopenia, particularly as innovative formulations potentiating BCAAs bioavailability and effects.


Assuntos
Aminoácidos de Cadeia Ramificada , Sarcopenia , Masculino , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Sarcopenia/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Suplementos Nutricionais
7.
Front Pharmacol ; 14: 1175606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361206

RESUMO

Introduction: Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), gliflozins, play an emerging role for the treatment of heart failure with reduced left ventricular ejection fraction (HFrEF). Nevertheless, the effects of SGLT2i on ventricular remodeling and function have not been completely understood yet. Explainable artificial intelligence represents an unprecedented explorative option to clinical research in this field. Based on echocardiographic evaluations, we identified some key clinical responses to gliflozins by employing a machine learning approach. Methods: Seventy-eight consecutive diabetic outpatients followed for HFrEF were enrolled in the study. Using a random forests classification, a single subject analysis was performed to define the profile of patients treated with gliflozins. An explainability analysis using Shapley values was used to outline clinical parameters that mostly improved after gliflozin therapy and machine learning runs highlighted specific variables predictive of gliflozin response. Results: The five-fold cross-validation analyses showed that gliflozins patients can be identified with a 0.70 ± 0.03% accuracy. The most relevant parameters distinguishing gliflozins patients were Right Ventricular S'-Velocity, Left Ventricular End Systolic Diameter and E/e' ratio. In addition, low Tricuspid Annular Plane Systolic Excursion values along with high Left Ventricular End Systolic Diameter and End Diastolic Volume values were associated to lower gliflozin efficacy in terms of anti-remodeling effects. Discussion: In conclusion, a machine learning analysis on a population of diabetic patients with HFrEF showed that SGLT2i treatment improved left ventricular remodeling, left ventricular diastolic and biventricular systolic function. This cardiovascular response may be predicted by routine echocardiographic parameters, with an explainable artificial intelligence approach, suggesting a lower efficacy in case of advanced stages of cardiac remodeling.

8.
Front Immunol ; 14: 1119888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122711

RESUMO

Introduction: Growth hormone secretagogues (GHSs) exert multiple actions, being able to activate GHS-receptor 1a, control inflammation and metabolism, to enhance GH/insulin-like growth factor-1 (IGF-1)-mediated myogenesis, and to inhibit angiotensin-converting enzyme. These mechanisms are of interest for potentially targeting multiple steps of pathogenic cascade in Duchenne muscular dystrophy (DMD). Methods: Here, we aimed to provide preclinical evidence for potential benefits of GHSs in DMD, via a multidisciplinary in vivo and ex vivo comparison in mdx mice, of two ad hoc synthesized compounds (EP80317 and JMV2894), with a wide but different profile. 4-week-old mdx mice were treated for 8 weeks with EP80317 or JMV2894 (320 µg/kg/d, s.c.). Results: In vivo, both GHSs increased mice forelimb force (recovery score, RS towards WT: 20% for EP80317 and 32% for JMV2894 at week 8). In parallel, GHSs also reduced diaphragm (DIA) and gastrocnemius (GC) ultrasound echodensity, a fibrosis-related parameter (RS: ranging between 26% and 75%). Ex vivo, both drugs ameliorated DIA isometric force and calcium-related indices (e.g., RS: 40% for tetanic force). Histological analysis highlighted a relevant reduction of fibrosis in GC and DIA muscles of treated mice, paralleled by a decrease in gene expression of TGF-ß1 and Col1a1. Also, decreased levels of pro-inflammatory genes (IL-6, CD68), accompanied by an increment in Sirt-1, PGC-1α and MEF2c expression, were observed in response to treatments, suggesting an overall improvement of myofiber metabolism. No detectable transcript levels of GHS receptor-1a, nor an increase of circulating IGF-1 were found, suggesting the presence of a novel receptor-independent mechanism in skeletal muscle. Preliminary docking studies revealed a potential binding capability of JMV2894 on metalloproteases involved in extracellular matrix remodeling and cytokine production, such as ADAMTS-5 and MMP-9, overactivated in DMD. Discussion: Our results support the interest of GHSs as modulators of pathology progression in mdx mice, disclosing a direct anti-fibrotic action that may prove beneficial to contrast pathological remodeling.


Assuntos
Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Distrofia Muscular de Duchenne , Secretagogos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Fibrose , Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/uso terapêutico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Secretagogos/metabolismo , Camundongos Endogâmicos mdx , Animais , Camundongos , Masculino , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/uso terapêutico
9.
J Pharmacol Exp Ther ; 340(2): 266-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22028392

RESUMO

The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic ß cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic ß cell KATP channel and the Kir6.2ΔC36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC50 = 10.1 × 10⁻9 M) and Kir6.2ΔC36 (IC50 = 9.6 × 10⁻9 M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10⁻9 M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.


Assuntos
Benzoxazinas/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Animais , Área Sob a Curva , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Fenômenos Eletrofisiológicos/fisiologia , Jejum/sangue , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Células HEK293 , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Azida Sódica/farmacologia , Tolbutamida/farmacologia
10.
Pharmacol Res ; 66(5): 401-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22967932

RESUMO

ATP-sensitive-K(+) (KATP) channels couple metabolism to the electrical activity of the cells. This channel is associated with glycolytic enzymes to form complexes regulating the channel activity in various tissues. The pyruvate-kinase (PK) enzyme is an antigen in the Paediatric Autoimmune Neuropsychiatric Disorders Associated Streptococcal infection known as PANDAS which is characterized by an abnormal production of auto-antibodies against PK. Here, the effects of the anti-pyruvate kinase antibody (anti-PK-ab) on the muscle and neuronal KATP channels were investigated in native rat skeletal muscle fibres and human neuroblastoma cell-line (SH-SY5Y), respectively. Furthermore, the interaction of PK with the inwardly rectifier potassium channel (Kir6.1/Kir6.2) subunits of the KATP channels was investigated by co-immunoprecipitation experiments in mouse brain using the anti-PK-ab. Patch-clamp experiments showed that the short-term incubation (1h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 enhanced the KATP current of 19.6% and 33.5%, respectively. As opposite, the long-term incubation (24h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 reduced the KATP current of 16% and 24%, respectively, reducing the diameter with atrophy. The direct application of the anti-PK-ab to the excised patches in the absence of intracellular ATP caused channel block, while in the presence of nucleotide channel opened. In neuronal cell line, in the short-term the anti-PK-ab potentiated KATP currents without affecting survival, while in the long-term the anti-PK-ab reduced KATP currents inducing neuronal death. Opening/blocking actions of the anti-PK antibodies on the KATP channels were observed, the blocking action causes fibre atrophy and neuronal death. We demonstrated that PK and Kir subunits are physically/functionally coupled in neurons. The KATP/PK complex can be proposed a novel target in the autoimmune diseases associated with anti-PK production as in PANDAS.


Assuntos
Anticorpos/farmacologia , Canais KATP/fisiologia , Músculo Esquelético/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Piruvato Quinase/imunologia , Animais , Encéfalo/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Músculo Esquelético/fisiologia , Neurônios/fisiologia , Ratos , Ratos Wistar
11.
J Vasc Access ; : 11297298221145752, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36573696

RESUMO

BACKGROUND: Trans-radial access is considered the best approach for cardiac catheterization. The choice of an alternative access route may be complex and trans-femoral access (TFA) is generally preferred. However, trans-brachial approach (TBA) may represent another feasible alternative. We therefore aimed to compare TBA and TFA in terms of access site bleeding and complications in a meta-analysis study. METHODS: We systematically searched principal databases for studies comparing femoral and brachial approach in terms of in-hospital vascular complications in patients undergoing cardiac catheterization (coronary angiography or percutaneous coronary intervention). RESULTS: Five retrospective studies and one randomized study were identified for the meta-analysis; 2756 patients undergoing a TBA and 331.208 patients undergoing a TFA for cardiac catheterization were included in the final study. No significant differences between access routes were found in terms of risk of any vascular complications (relative risk 1.18; 95% CI: 0.91-1.53; p n.s.). Brachial access was associated with a significantly lower risk of access site bleeding (relative risk 0.46; 95% CI 0.24-0.88, p = 0.02). CONCLUSIONS: TBA for cardiac catheterization was associated with a lower risk of access site bleeding and a comparable risk of any vascular complications compared with TFA. TBA may be considered a reasonable alternative access route for cardiac catheterization, at least as femoral approach.

12.
PLoS One ; 16(1): e0245397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434240

RESUMO

The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-ß1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.


Assuntos
Diafragma/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Animais , Diafragma/patologia , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Transformador beta1/análise , Ultrassonografia
13.
Biomolecules ; 11(11)2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34827740

RESUMO

ROS-activated cSrc tyrosine kinase (TK) promotes the degradation of ß-dystroglycan (ß-DG), a dystrophin-glycoprotein complex component, which may reinforce damaging signals in Duchenne muscular dystrophy (DMD). Therefore, cSrc-TK represents a promising therapeutic target. In mdx mice, a 4-week subcutaneous treatment with dasatinib (DAS), a pan-Src-TKs inhibitor approved as anti-leukemic agent, increased muscle ß-DG, with minimal amelioration of morphofunctional indices. To address possible dose/pharmacokinetic (PK) issues, a new oral DAS/hydroxypropyl(HP)-ß-cyclodextrin(CD) complex was developed and chronically administered to mdx mice. The aim was to better assess the role of ß-DG in pathology progression, meanwhile confirming DAS mechanism of action over the long-term, along with its efficacy and tolerability. The 4-week old mdx mice underwent a 12-week treatment with DAS/HP-ß-CD10% dissolved in drinking water, at 10 or 20 mg/kg/day. The outcome was evaluated via in vivo/ex vivo disease-relevant readouts. Oral DAS/HP-ß-CD efficiently distributed in mdx mice plasma and tissues in a dose-related fashion. The new DAS formulation confirmed its main upstream mechanism of action, by reducing ß-DG phosphorylation and restoring its levels dose-dependently in both diaphragm and gastrocnemius muscle. However, it modestly improved in vivo neuromuscular function, ex vivo muscle force, and histopathology, although the partial recovery of muscle elasticity and the decrease of CK and LDH plasma levels suggest an increased sarcolemmal stability of dystrophic muscles. Our clinically oriented study supports the interest in this new, pediatric-suitable DAS formulation for proper exposure and safety and for enhancing ß-DG expression. This latter mechanism is, however, not sufficient by itself to impact on pathology progression. In-depth analyses will be dedicated to elucidating the mechanism limiting DAS effectiveness in dystrophic settings, meanwhile assessing its potential synergy with dystrophin-based molecular therapies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Dasatinibe , Distroglicanas , Camundongos
14.
Cells ; 10(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359961

RESUMO

(1) Background: Cantu syndrome (CS) arises from gain-of-function (GOF) mutations in the ABCC9 and KCNJ8 genes, which encode ATP-sensitive K+ (KATP) channel subunits SUR2 and Kir6.1, respectively. Most CS patients have mutations in SUR2, the major component of skeletal muscle KATP, but the consequences of SUR2 GOF in skeletal muscle are unknown. (2) Methods: We performed in vivo and ex vivo characterization of skeletal muscle in heterozygous SUR2[A478V] (SUR2wt/AV) and homozygous SUR2[A478V] (SUR2AV/AV) CS mice. (3) Results: In SUR2wt/AV and SUR2AV/AV mice, forelimb strength and diaphragm amplitude movement were reduced; muscle echodensity was enhanced. KATP channel currents recorded in Flexor digitorum brevis fibers showed reduced MgATP-sensitivity in SUR2wt/AV, dramatically so in SUR2AV/AV mice; IC50 for MgATP inhibition of KATP currents were 1.9 ± 0.5 × 10-5 M in SUR2wt/AV and 8.6 ± 0.4 × 10-6 M in WT mice and was not measurable in SUR2AV/AV. A slight rightward shift of sensitivity to inhibition by glibenclamide was detected in SUR2AV/AV mice. Histopathological and qPCR analysis revealed atrophy of soleus and tibialis anterior muscles and up-regulation of atrogin-1 and MuRF1 mRNA in CS mice. (4) Conclusions: SUR2[A478V] "knock-in" mutation in mice impairs KATP channel modulation by MgATP, markedly so in SUR2AV/AV, with atrophy and non-inflammatory edema in different skeletal muscle phenotypes.


Assuntos
Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipertricose/genética , Hipertricose/metabolismo , Complexo Mediador/metabolismo , Músculo Esquelético/metabolismo , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Animais , Atrofia/patologia , Modelos Animais de Doenças , Mutação com Ganho de Função/genética , Humanos , Camundongos , Fenótipo
15.
J Physiol ; 588(Pt 5): 773-84, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20064856

RESUMO

The involvement of ATP-sensitive K(+) (K(ATP)) channels in the atrophy of slow-twitch (MHC-I) soleus (SOL) and fast-twitch (MHC-IIa) flexor digitorum brevis (FDB) muscles was investigated in vivo in 14-day-hindlimb-unloaded (14-HU) rats, an animal model of disuse, and in vitro in drug-induced muscle atrophy. Patch-clamp and gene expression experiments were performed in combination with measurements of fibre diameters used as an index of atrophy, and with MHC labelling in 14-HU rats and controls. A down-regulation of K(ATP) channel subunits Kir6.2, SUR1 and SUR2B with marked atrophy and incomplete phenotype transition were observed in SOL of 14-HU rats. The observed changes in K(ATP) currents were well correlated with changes in fibre diameters and SUR1 expression, as well as with MHC-IIa expression. Half of the SOL fibres of 14-HU rats had reduced diameter and K(ATP) currents and were labelled by MHC-I antibodies. Non-atrophic fibres were labelled by MHC-IIa (22%) antibodies and had enhanced K(ATP) currents, or were labelled by MHC-I (28%) antibodies but had normal current. FDB was not affected in 14-HU rats and this is related to the high expression/activity of Kir6.2/SUR1 subunits characterizing this muscle phenotype. The long-term incubation of the control muscles in vitro with the K(ATP) channel blocker glibenclamide (10(6)m) reduced the K(ATP) currents with atrophy and these effects were prevented by the K(ATP) channel opener diazoxide (10(4)m). The in vivo down-regulation of SUR1, and possibly of Kir6.2 and SUR2B, or their in vitro pharmacological blockade activates atrophic signalling in skeletal muscle. All these findings suggest a new role for the K(ATP) channel as a molecular sensor of atrophy.


Assuntos
Ativação do Canal Iônico , Canais KATP/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/fisiopatologia , Animais , Ratos
16.
Nutrients ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751732

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism. METHODS: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism. RESULTS: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, mix 2 (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices. CONCLUSION: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.


Assuntos
Alanina/administração & dosagem , Suplementos Nutricionais , Músculo Esquelético/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Condicionamento Físico Animal/fisiologia , Aminoácidos de Cadeia Ramificada/administração & dosagem , Animais , Isoleucina/administração & dosagem , Leucina/administração & dosagem , Camundongos , Modelos Animais , Fadiga Muscular/efeitos dos fármacos , Proteínas Musculares/metabolismo , Estudo de Prova de Conceito , Valina/administração & dosagem
17.
Front Pharmacol ; 11: 604885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329006

RESUMO

Cantù syndrome (CS) arises from mutations in ABCC9 and KCNJ8 genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native Flexor digitorum brevis (FDB) and Soleus (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1wt/VM mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1wt/VM mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1wt/VM FDB fibers relative to WT and a reduced response to glibenclamide. The IC50 of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10-7 M in WT and 1.2 ± 0.1 × 10-6 M in Kir6.1wt/VM mice, respectively; and it was 1.2 ± 0.4 × 10-7 M in SOL WT fibers but not measurable in Kir6.1wt/VM fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1wt/VM fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1wt/VM mice. Kir6.1wt/VM mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.

18.
Pharmacol Res Perspect ; 8(3): e00585, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32378360

RESUMO

The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-ß-cyclodextrin MXD GEL formulation (MXD/HP-ß-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-ß-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-ß-CD inclusion complex reduces these adverse effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Pressão Sanguínea/efeitos dos fármacos , Minoxidil/administração & dosagem , Neoplasias/induzido quimicamente , Administração Tópica , Alopecia/tratamento farmacológico , Animais , Eletrocardiografia , Excipientes/química , Feminino , Géis , Humanos , Masculino , Minoxidil/toxicidade , Soluções Farmacêuticas , Farmacovigilância , Ratos , Ratos Wistar , Estudos Retrospectivos
19.
Sci Rep ; 10(1): 6959, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332926

RESUMO

Biological meshes improve the outcome of incisional hernia repairs in infected fields but often lead to recurrence after bridging techniques. Sixty male Wistar rats undergoing the excision of an abdominal wall portion and bridging mesh repair were randomised in two groups: Group A (N = 30) using the uncoated equine pericardium mesh; Group B (N = 30) using the polyethylene oxide (PEO)-coated one. No deaths were observed during treatment. Shrinkage was significantly less common in A than in B (3% vs 53%, P < 0.001). Adhesions were the most common complication and resulted significantly higher after 90 days in B than in A (90% vs 30%, P < 0.01). Microscopic examination revealed significantly (P < 0.05) higher mesh integrity, fibrosis and calcification in B compared to A. The enzymatic degradation, as assessed with Raman spectroscopy and enzyme stability test, affected A more than B. The PEO-coated equine pericardium mesh showed higher resistance to biodegradation compared to the uncoated one. Understanding the changes of these prostheses in a surgical setting may help to optimize the PEO-coating in designing new biomaterials for the bridging repair of the abdominal wall.


Assuntos
Pericárdio/cirurgia , Polietilenoglicóis/química , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/química , Estabilidade Enzimática , Cavalos , Masculino , Modelos Teóricos , Ratos , Ratos Wistar , Análise Espectral Raman
20.
Sci Rep ; 9(1): 3185, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816241

RESUMO

The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1G93A) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Canais de Cloreto/metabolismo , Músculo Esquelético/metabolismo , Superóxido Dismutase-1 , Animais , Modelos Animais de Doenças , Fibronectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/patologia , Receptores de AMPA/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA