Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38860860

RESUMO

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV) induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated blocking dynamin decreased the infectivity of RRV whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV while late endosome inhibition had no effect. Following infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human BA patients experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that utilize Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10, and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.

2.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515290

RESUMO

Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRVVP4-R446G) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice.IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRVVP4-R446G) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro, the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo, it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia.


Assuntos
Atresia Biliar/patologia , Proteínas do Capsídeo/genética , Proteínas Mutantes/genética , Mutação Puntual , Rotavirus/patogenicidade , Animais , Animais Recém-Nascidos , Atresia Biliar/virologia , Proteínas do Capsídeo/metabolismo , Modelos Animais de Doenças , Camundongos , Proteínas Mutantes/metabolismo , Genética Reversa , Rotavirus/genética , Tropismo Viral , Replicação Viral
3.
Hepatology ; 65(4): 1278-1292, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27859498

RESUMO

Biliary atresia (BA) is a neonatal obstructive cholangiopathy that progresses to end-stage liver disease, often requiring transplantation. The murine model of BA, employing rhesus rotavirus (RRV), parallels human disease and has been used to elucidate mechanistic aspects of a virus induced biliary cholangiopathy. We previously reported that the RRV VP4 gene plays an integral role in activating the immune system and induction of BA. Using rotavirus binding and blocking assays, this study elucidated how RRV VP4 protein governs cholangiocyte susceptibility to infection both in vitro and in vivo in the murine model of BA. We identified the amino acid sequence on VP4 and its cholangiocyte binding protein, finding that the sequence is specific to those rotavirus strains that cause obstructive cholangiopathy. Pretreatment of murine and human cholangiocytes with this VP4-derived peptide (TRTRVSRLY) significantly reduced the ability of RRV to bind and infect cells. However, the peptide did not block cholangiocyte binding of TUCH and Ro1845, strains that do not induce murine BA. The SRL sequence within TRTRVSRLY is required for cholangiocyte binding and viral replication. The cholangiocyte membrane protein bound by SRL was found to be Hsc70. Inhibition of Hsc70 by small interfering RNAs reduced RRV's ability to infect cholangiocytes. This virus-cholangiocyte interaction is also seen in vivo in the murine model of BA, where inoculation of mice with TRTRVSRLY peptide significantly reduced symptoms and mortality in RRV-injected mice. CONCLUSION: The tripeptide SRL on RRV VP4 binds to the cholangiocyte membrane protein Hsc70, defining a novel binding site governing VP4 attachment. Investigations are underway to determine the cellular response to this interaction to understand how it contributes to the pathogenesis of BA. (Hepatology 2017;65:1278-1292).


Assuntos
Atresia Biliar/genética , Proteínas do Capsídeo/genética , Colangite/genética , Rotavirus/patogenicidade , Animais , Animais Recém-Nascidos , Ductos Biliares/citologia , Atresia Biliar/virologia , Células Cultivadas , Colangite/virologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Macaca mulatta , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Rotavirus/genética , Infecções por Rotavirus/patologia , Infecções por Rotavirus/fisiopatologia , Ligação Viral , Replicação Viral
4.
J Biol Chem ; 290(20): 12879-98, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25825487

RESUMO

The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions.


Assuntos
Inibidores Enzimáticos , Proteínas Ativadoras de ras GTPase/antagonistas & inibidores , Fatores ras de Troca de Nucleotídeo Guanina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
5.
Am J Physiol Cell Physiol ; 308(1): C51-60, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25318106

RESUMO

In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis.


Assuntos
Células Epiteliais/enzimologia , Cristalino/enzimologia , Neoplasias Pulmonares/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína bcl-X/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Simulação por Computador , Bases de Dados de Proteínas , Imunofluorescência , Humanos , Imunoprecipitação , Cristalino/citologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
6.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G466-74, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26206856

RESUMO

Biliary atresia (BA), a neonatal obstructive cholangiopathy, remains the most common indication for pediatric liver transplantation in the United States. In the murine model of BA, Rhesus rotavirus (RRV) VP4 surface protein determines biliary duct tropism. In this study, we investigated how VP4 governs induction of murine BA. Newborn mice were injected with 16 strains of rotavirus and observed for clinical symptoms of BA and mortality. Cholangiograms were performed to confirm bile duct obstruction. Livers and bile ducts were harvested 7 days postinfection for virus titers and histology. Flow cytometry assessed mononuclear cell activation in harvested cell populations from the liver. Cytotoxic NK cell activity was determined by the ability of NK cells to kill noninfected cholangiocytes. Of the 16 strains investigated, the 6 with the highest homology to the RRV VP4 (>87%) were capable of infecting bile ducts in vivo. Although the strain Ro1845 replicated to a titer similar to RRV in vivo, it caused no symptoms or mortality. A Ro1845 reassortant containing the RRV VP4 induced all BA symptoms, with a mortality rate of 89%. Flow cytometry revealed that NK cell activation was significantly increased in the disease-inducing strains and these NK cells demonstrated a significantly higher percentage of cytotoxicity against noninfected cholangiocytes. Rotavirus strains with >87% homology to RRV's VP4 were capable of infecting murine bile ducts in vivo. Development of murine BA was mediated by RRV VP4-specific activation of mononuclear cells, independent of viral titers.


Assuntos
Atresia Biliar/patologia , Proteínas do Capsídeo/genética , Colestase/patologia , Leucócitos Mononucleares/fisiologia , Ativação de Macrófagos/fisiologia , Infecções por Rotavirus/patologia , Rotavirus/genética , Animais , Ductos Biliares/virologia , Ductos Biliares Extra-Hepáticos/patologia , Interferon gama/metabolismo , Células Matadoras Naturais/patologia , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Infecções por Rotavirus/mortalidade , Ensaio de Placa Viral , Replicação Viral
7.
Front Immunol ; 15: 1324045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390324

RESUMO

MYC activation is a known hallmark of cancer as it governs the gene targets involved in various facets of cancer progression. Of interest, MYC governs oncometabolism through the interactions with its partners and cofactors, as well as cancer immunity via its gene targets. Recent investigations have taken interest in characterizing these interactions through multi-Omic approaches, to better understand the vastness of the MYC network. Of the several gene targets of MYC involved in either oncometabolism or oncoimmunology, few of them overlap in function. Prominent interactions have been observed with MYC and HIF-1α, in promoting glucose and glutamine metabolism and activation of antigen presentation on regulatory T cells, and its subsequent metabolic reprogramming. This review explores existing knowledge of the role of MYC in oncometabolism and oncoimmunology. It also unravels how MYC governs transcription and influences cellular metabolism to facilitate the induction of pro- or anti-tumoral immunity. Moreover, considering the significant roles MYC holds in cancer development, the present study discusses effective direct or indirect therapeutic strategies to combat MYC-driven cancer progression.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicólise
8.
Cancer Genomics Proteomics ; 21(4): 350-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944422

RESUMO

BACKGROUND/AIM: Uveal melanoma is an ocular malignancy whose prognosis severely worsens following metastasis. In order to improve the understanding of molecular physiology of metastatic uveal melanoma, we identified genes and pathways implicated in metastatic vs non-metastatic uveal melanoma. PATIENTS AND METHODS: A previously published dataset from Gene Expression Omnibus (GEO) was used to identify differentially expressed genes between metastatic and non-metastatic samples as well as to conduct pathway and perturbagen analyses using Gene Set Enrichment Analysis (GSEA), EnrichR, and iLINCS. RESULTS: In male metastatic uveal melanoma samples, the gene LOC401052 is significantly down-regulated and FHDC1 is significantly up-regulated compared to non-metastatic male samples. In female samples, no significant differently expressed genes were found. Additionally, we identified many significant up-regulated immune response pathways in male metastatic uveal melanoma, including "T cell activation in immune response". In contrast, many top up-regulated female pathways involve iron metabolism, including "heme biosynthetic process". iLINCS perturbagen analysis identified that both male and female samples have similar discordant activity with growth factor receptors, but only female samples have discordant activity with progesterone receptor agonists. CONCLUSION: Our results from analyzing genes, pathways, and perturbagens demonstrate differences in metastatic processes between sexes.


Assuntos
Perfilação da Expressão Gênica , Melanoma , Neoplasias Uveais , Humanos , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Neoplasias Uveais/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Feminino , Masculino , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Fatores Sexuais
9.
Hum Genomics ; 5(5): 497-505, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21807604

RESUMO

Progress in functional genomics and structural studies on biological macromolecules are generating a growing number of potential targets for therapeutics, adding to the importance of computational approaches for small molecule docking and virtual screening of candidate compounds. In this review, recent improvements in several public domain packages that are widely used in the context of drug development, including DOCK, AutoDock, AutoDock Vina and Screening for Ligands by Induced-fit Docking Efficiently (SLIDE) are surveyed. The authors also survey methods for the analysis and visualisation of docking simulations, as an important step in the overall assessment of the results. In order to illustrate the performance and limitations of current docking programs, the authors used the National Center for Toxicological Research (NCTR) oestrogen receptor benchmark set of 232 oestrogenic compounds with experimentally measured strength of binding to oestrogen receptor alpha. The methods tested here yielded a correlation coefficient of up to 0.6 between the predicted and observed binding affinities for active compounds in this benchmark.


Assuntos
Modelos Moleculares , Proteínas/química , Software , Algoritmos , Animais , Sítios de Ligação , Congêneres do Estradiol/química , Receptor alfa de Estrogênio/química , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica
10.
Nucleic Acids Res ; 38(Web Server issue): W662-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20504857

RESUMO

Molecular simulations offer important mechanistic and functional clues in studies of proteins and other macromolecules. However, interpreting the results of such simulations increasingly requires tools that can combine information from multiple structural databases and other web resources, and provide highly integrated and versatile analysis tools. Here, we present a new web server that integrates high-quality animation of molecular motion (MM) with structural and functional analysis of macromolecules. The new tool, dubbed POLYVIEW-MM, enables animation of trajectories generated by molecular dynamics and related simulation techniques, as well as visualization of alternative conformers, e.g. obtained as a result of protein structure prediction methods or small molecule docking. To facilitate structural analysis, POLYVIEW-MM combines interactive view and analysis of conformational changes using Jmol and its tailored extensions, publication quality animation using PyMol, and customizable 2D summary plots that provide an overview of MM, e.g. in terms of changes in secondary structure states and relative solvent accessibility of individual residues in proteins. Furthermore, POLYVIEW-MM integrates visualization with various structural annotations, including automated mapping of known inter-action sites from structural homologs, mapping of cavities and ligand binding sites, transmembrane regions and protein domains. URL: http://polyview.cchmc.org/conform.html.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Software , Proteínas do Capsídeo/química , Gráficos por Computador , Internet , Peptídeos/química , Estrutura Terciária de Proteína
11.
Hepatol Commun ; 6(10): 2702-2714, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866580

RESUMO

Biliary atresia (BA) is a neonatal inflammatory cholangiopathy that requires surgical intervention by Kasai portoenterostomy to restore biliary drainage. Even with successful portoenterostomy, most patients diagnosed with BA progress to end-stage liver disease, necessitating a liver transplantation for survival. In the murine model of BA, rhesus rotavirus (RRV) infection of neonatal mice induces an inflammatory obstructive cholangiopathy that parallels human BA. The model is triggered by RRV viral protein (VP)4 binding to cholangiocyte cell-surface proteins. High mobility group box 1 (HMGB1) protein is a danger-associated molecular pattern that when released extracellularly moderates innate and adaptive immune response. In this study, we investigated how mutations in three RRV VP4-binding sites, RRVVP4-K187R (sialic acid-binding site), RRVVP4-D308A (integrin α2ß1-binding site), and RRVVP4-R446G (heat shock cognate 70 [Hsc70]-binding site), affects infection, HMGB1 release, and the murine model of BA. Newborn pups injected with RRVVP4-K187R and RRVVP4-D308A developed an obstruction within the extrahepatic bile duct similar to wild-type RRV, while those infected with RRVVP4-R446G remained patent. Infection with RRVVP4-R446G induced a lower level of HMGB1 release from cholangiocytes and in the serum of infected pups. RRV infection of HeLa cells lacking Hsc70 resulted in no HMGB1 release, while transfection with wild-type Hsc70 into HeLa Hsc70-deficient cells reestablished HMGB1 release, indicating a mechanistic role for Hsc70 in its release. Conclusion: Binding to Hsc70 contributes to HMGB1 release; therefore, Hsc70 potentially serves as a therapeutic target for BA.


Assuntos
Atresia Biliar , Infecções por Rotavirus , Rotavirus , Animais , Animais Recém-Nascidos , Atresia Biliar/etiologia , Sítios de Ligação , Modelos Animais de Doenças , Células HeLa , Humanos , Integrina alfa2beta1 , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico , Rotavirus/genética , Infecções por Rotavirus/metabolismo , Proteínas Virais
12.
Neuropsychopharmacology ; 47(12): 2033-2041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35354897

RESUMO

Antipsychotic drugs (APDs) are effective in treating positive symptoms of schizophrenia (SCZ). However, they have a substantial impact on postmortem studies. As most cohorts lack samples from drug-naive patients, many studies, rather than understanding SCZ pathophysiology, are analyzing the drug effects. We hypothesized that comparing SCZ-altered and APD-influenced signatures derived from the same cohort can provide better insight into SCZ pathophysiology. For this, we performed LCMS-based proteomics on dorsolateral prefrontal cortex (DLPFC) samples from control and SCZ subjects and used statistical approaches to identify SCZ-altered and APD-influenced proteomes, validated experimentally using independent cohorts and published datasets. Functional analysis of both proteomes was contrasted at the biological-pathway, cell-type, subcellular-synaptic, and drug-target levels. In silico validation revealed that the SCZ-altered proteome was conserved across several studies from the DLPFC and other brain areas. At the pathway level, SCZ influenced changes in homeostasis, signal-transduction, cytoskeleton, and dendrites, whereas APD influenced changes in synaptic-signaling, neurotransmitter-regulation, and immune-system processes. At the cell-type level, the SCZ-altered and APD-influenced proteomes were associated with two distinct striatum-projecting layer-5 pyramidal neurons regulating dopaminergic-secretion. At the subcellular synaptic level, compensatory pre- and postsynaptic events were observed. At the drug-target level, dopaminergic processes influenced the SCZ-altered upregulated-proteome, whereas nondopaminergic and a diverse array of non-neuromodulatory mechanisms influenced the downregulated-proteome. Previous findings were not independent of the APD effect and thus require re-evaluation. We identified a hyperdopaminergic cortex and drugs targeting the cognitive SCZ-symptoms and discussed their influence on SCZ pathology in the context of the cortico-striatal pathway.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/metabolismo , Dopamina/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Proteômica , Esquizofrenia/metabolismo
13.
PLoS One ; 16(6): e0244341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166366

RESUMO

BACKGROUND: Exposure to particulate matter has been shown to increase the adhesion of bacteria to human airway epithelial cells. However, the impact of traffic-related air pollution (TRAP) on the respiratory microbiome is unknown. METHODS: Forty children were recruited through the Cincinnati Childhood Allergy and Air Pollution Study, a longitudinal cohort followed from birth through early adolescence. Saliva and induced sputum were collected at age 14 years. Exposure to TRAP was characterized from birth through the time of sample collection using a previously validated land-use regression model. Sequencing of the bacterial 16S and ITS fungal rRNA genes was performed on sputum and saliva samples. The relative abundance of bacterial taxa and diversity indices were compared in children with exposure to high and low TRAP. We also used multiple linear regression to assess the effect of TRAP exposure, gender, asthma status, and socioeconomic status on the alpha diversity of bacteria in sputum. RESULTS: We observed higher bacterial alpha diversity indices in sputum than in saliva. The diversity indices for bacteria were greater in the high TRAP exposure group than the low exposure group. These differences remained after adjusting for asthma status, gender, and mother's education. No differences were observed in the fungal microbiome between TRAP exposure groups. CONCLUSION: Our findings indicate that exposure to TRAP in early childhood and adolescence may be associated with greater bacterial diversity in the lower respiratory tract. Asthma status does not appear to confound the observed differences in diversity. These results demonstrate that there may be a TRAP-exposure related change in the lower respiratory microbiota that is independent of asthma status.


Assuntos
Poluição do Ar/efeitos adversos , Asma/fisiopatologia , Bactérias/classificação , Carga Bacteriana/estatística & dados numéricos , Exposição Ambiental/efeitos adversos , Doenças Respiratórias/microbiologia , Poluição Relacionada com o Tráfego/efeitos adversos , Adolescente , Bactérias/genética , Bactérias/isolamento & purificação , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Metagenoma , Doenças Respiratórias/epidemiologia , Saliva/microbiologia , Escarro/microbiologia , Emissões de Veículos
14.
PLoS One ; 16(12): e0260440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34919543

RESUMO

Phosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based platforms for measuring reporter peptide signal levels allow for differential phosphorylation analysis between conditions for distinct active kinases. Peptide array technologies like the PamStation12 from PamGene allow for generating high-throughput, multi-dimensional, and complex functional proteomics data. As the adoption rate of such technologies increases, there is an imperative need for software tools that streamline the process of analyzing such data. We present Kinome Random Sampling Analyzer (KRSA), an R package and R Shiny web-application for analyzing kinome array data to help users better understand the patterns of functional proteomics in complex biological systems. KRSA is an All-In-One tool that reads, formats, fits models, analyzes, and visualizes PamStation12 kinome data. While the underlying algorithm has been experimentally validated in previous publications, we demonstrate KRSA workflow on dorsolateral prefrontal cortex (DLPFC) in male (n = 3) and female (n = 3) subjects to identify differential phosphorylation signatures and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar global phosphorylation signals patterns.


Assuntos
Córtex Pré-Frontal Dorsolateral/enzimologia , Família Multigênica , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Software , Algoritmos , Autopsia , Benchmarking , Conjuntos de Dados como Assunto , Córtex Pré-Frontal Dorsolateral/química , Feminino , Expressão Gênica , Humanos , Masculino , Fosfoproteínas/classificação , Fosfoproteínas/genética , Fosforilação , Análise de Componente Principal , Análise Serial de Proteínas , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/classificação , Proteínas Tirosina Quinases/genética , Proteômica/métodos
15.
Neuropsychopharmacology ; 46(1): 116-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32604402

RESUMO

CNS disorders, and in particular psychiatric illnesses, lack definitive disease-altering therapeutics. The limited understanding of the mechanisms driving these illnesses with the slow pace and high cost of drug development exacerbates this issue. For these reasons, drug repurposing - both a less expensive and time-efficient practice compared to de novo drug development - has been a promising strategy to overcome the paucity of treatments available for these debilitating disorders. While empirical drug-repurposing has been a routine practice in clinical psychiatry, innovative, informed, and cost-effective repurposing efforts using big data ("omics") have been designed to characterize drugs by structural and transcriptomic signatures. These strategies, in conjunction with ontological integration, provide an important opportunity to address knowledge-based challenges associated with drug development for CNS disorders. In this review, we discuss various signature-based in silico approaches to drug repurposing, its integration with multiple omics platforms, and how this data can be used for clinically relevant, evidence-based drug repurposing. These tools provide an exciting translational avenue to merge omics-based drug discovery platforms with patient-specific disease signatures, ultimately facilitating the identification of new therapies for numerous psychiatric disorders.


Assuntos
Descoberta de Drogas , Reposicionamento de Medicamentos , Biologia Computacional , Simulação por Computador , Desenvolvimento de Medicamentos , Humanos
16.
BMC Genomics ; 11: 27, 2010 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-20070909

RESUMO

BACKGROUND: A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. RESULTS: Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. CONCLUSION: The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.


Assuntos
Mineração de Dados/métodos , Genômica/métodos , Software , Animais , Perfilação da Expressão Gênica , Humanos , Internet , Camundongos , Ratos
17.
Mol Vis ; 16: 72-8, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20090923

RESUMO

PURPOSE: The adult newt can regenerate lens from pigmented epithelial cells (PECs) of the dorsal iris via dedifferentiation. The purpose of this research is to obtain sequence resources for a newt lens regeneration study and to obtain insights of dedifferentiation at the molecular level. METHODS: mRNA was purified from iris during dedifferentiation and its cDNA library was constructed. From the cDNA library 10,449 clones were sequenced and analyzed. RESULTS: From 10,449 reads, 780 contigs and 1,666 singlets were annotated. The presence of several cancer- and apoptosis-related genes during newt dedifferentiation was revealed. Moreover, several candidate genes, which might participate in reprogramming during dedifferentiation, were also found. CONCLUSIONS: The expression of cancer- and apoptosis-related genes could be hallmarks during dedifferentiation. The expression sequence tag (EST) resource is useful for the future study of newt dedifferentiation, and the sequence information is available in GenBank (accession numbers; FS290155-FS300559).


Assuntos
Desdiferenciação Celular/genética , Etiquetas de Sequências Expressas/metabolismo , Perfilação da Expressão Gênica , Cristalino/citologia , Cristalino/fisiologia , Regeneração/genética , Salamandridae/genética , Animais , Apoptose/genética , Reprogramação Celular/genética , Regulação da Expressão Gênica , Iris/citologia , Iris/metabolismo , Neoplasias/genética , Análise de Sequência de DNA
18.
Adv Exp Med Biol ; 680: 307-19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20865514

RESUMO

Many sequence-based predictors of structural and functional properties of proteins have been developed in the past. In this study, we developed new methods for predicting measures of conformational flexibility in proteins, including X-ray structure-derived temperature (B-) factors and the variance within NMR structural ensemble, as effectively measured by the solvent accessibility standard deviations (SASDs). We further tested whether these predicted measures of conformational flexibility in crystal lattices and solution, respectively, can be used to improve the prediction of phosphorylation in proteins. The latter is an example of a common post-translational modification that modulates protein function, e.g., by affecting interactions and conformational flexibility of phosphorylated sites. Using robust epsilon-insensitive support vector regression (ε-SVR) models, we assessed two specific representations of protein sequences: one based on the position-specific scoring matrices (PSSMs) derived from multiple sequence alignments, and an augmented representation that incorporates real-valued solvent accessibility and secondary structure predictions (RSA/SS) as additional measures of local structural propensities. We showed that a combination of PSSMs and real-valued SS/RSA predictions provides systematic improvements in the accuracy of both B-factors and SASD prediction. These intermediate predictions were subsequently combined into an enhanced predictor of phosphorylation that was shown to significantly outperform methods based on PSSM alone. We would like to stress that to the best of our knowledge, this is the first example of using predicted from sequence NMR structure-based measures of conformational flexibility in solution for the prediction of other properties of proteins. Phosphorylation prediction methods typically employ a two-class classification approach with the limitation that the set of negative examples used for training may include some sites that are simply unknown to be phosphorylated. While one-class classification techniques have been considered in the past as a solution to this problem, their performance has not been systematically compared to two-class techniques. In this study, we developed and compared one- and two-class support vector machine (SVM)-based predictors for several commonly used sets of attributes. [These predictors are being made available at http://sable.cchmc.org/].


Assuntos
Conformação Proteica , Proteínas/química , Inteligência Artificial , Biologia Computacional , Cristalografia por Raios X , Bases de Dados de Proteínas , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Alinhamento de Sequência
19.
Proteins ; 76(4): 930-45, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19326457

RESUMO

One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine-tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large-scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed.


Assuntos
Algoritmos , Proteínas/química , Homologia Estrutural de Proteína , Simulação por Computador , Modelos Moleculares , Dobramento de Proteína
20.
Sci Total Environ ; 610-611: 212-218, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803198

RESUMO

"Green" housing is designed to use low-impact materials, increase energy efficiency and improve occupant health. However, little is known about the indoor mycobiome of green homes. The current study is a subset of a multicenter study that aims to investigate the indoor environment of green homes and the respiratory health of asthmatic children. In the current study, the mycobiome in air, bed dust and floor dust was compared between green (study site) and non-green (control site), low-income homes in Cincinnati, Ohio. The samples were collected at baseline (within four months following renovation), and 12months after the baseline at the study site. Parallel sample collection was conducted in non-green control homes. Air samples were collected by PM2.5 samplers over 5-days. Bed and floor dust samples were vacuumed after the air sampling was completed. The DNA sample extracts were analyzed using ITS amplicon sequencing. Analysis indicated that there was no clear trend in the fungal communities between green and non-green homes. Instead, fungal community differences were greatest between sample types - air, bed, and floor. Microbial communities also changed substantially between sampling intervals in both green and non-green homes for all sample types, potentially indicating that there was very little stability in the mycobiomes. Research gaps remain regarding how indoor mycobiome fluctuates over time. Longer follow-up periods might elucidate the effect of green renovation on microbial load in buildings.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Habitação , Micobioma , Poeira , Humanos , Renda , Ohio , Áreas de Pobreza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA