Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(52): 11038-11050, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33337890

RESUMO

Recent advances in laser technology have made three-photon (3P) microscopy a real possibility, raising interest in the phenomenon of 3P absorption (3PA). Understanding 3PA of organic chromophores is especially important in view of those imaging applications that rely on exogenous probes, whose optical properties can be manipulated and optimized. Here, we present measurements and theoretical analysis of the degenerate 3PA spectra of several phosphorescent metalloporphyrins, which are used in the construction of biological oxygen probes. The effective 3PA cross sections (σ(3)) of these porphyrins near 1700 nm, a new promising biological optical window, were found to be on the order of 1000 GM3 (1 GM3 = 10-83 cm6 s2), therefore being among the highest values reported to date for organic chromophores. To interpret our data, we developed a qualitative four-state model specific for porphyrins and used it in conjunction with quantitative analysis based on the time-dependent density functional theory (TDDFT)/a posteriori Tamm-Dancoff approximation (ATDA)/sum-over-states (SOS) formalism. The analysis revealed that B (Soret) state plays a key role in the enhancement of 3PA of porphyrins in the Q band region, while the low-lying two-photon (2P)-allowed gerade states interfere negatively and diminish the 3PA strength. This study features the first systematic examination of 3PA properties of porphyrins, suggesting ways to improve their performance and optimize them for imaging and other biomedical applications.


Assuntos
Espectroscopia Fotoeletrônica/métodos , Porfirinas/química , Lasers , Modelos Moleculares , Estrutura Molecular
2.
J Phys Chem B ; 126(48): 10120-10135, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36444999

RESUMO

Two-dimensional infrared spectroscopy (2DIR) was applied to phylloquinone (PhQ), an important biological cofactor, to elucidate the impact of hydrogen bonding on the ultrafast dynamics and energetics of the carbonyl stretching modes. 2DIR measurements were performed on PhQ dissolved in hexanol, which served as the hydrogen bonding solvent, and hexane, which served as a non-hydrogen bonding control. Molecular dynamics simulations and quantum chemical calculations were performed to aid in spectral assignment and interpretation. From the position of the peaks in the 2DIR spectra, we extracted the transition frequencies for the fundamental, overtone, and combination bands of hydrogen bonded and non-hydrogen bonded carbonyl groups of PhQ in the 1635-1680 cm-1 region. We find that hydrogen bonding to a single carbonyl group acts to decouple the two carbonyl units of PhQ. Through analysis of the time-resolved 2DIR data, we find that hydrogen bonding leads to faster vibrational relaxation as well as an increase in the inhomogeneous broadening of the carbonyl groups. Overall, this work demonstrates how hydrogen bonding to the carbonyl groups of PhQ presents in the 2DIR spectra, laying the groundwork to use PhQ as a 2DIR probe to characterize the ultrafast fluctuations in the local environment of natural photosynthetic complexes.


Assuntos
Vitamina K 1 , Análise Espectral
3.
J Phys Chem Lett ; 10(3): 413-418, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630311

RESUMO

Self-assembled coordination cages form host-guest complexes through weak noncovalent interactions. Knowledge of how these weak interactions affect the structure, reactivity, and dynamics of guest molecules is important to further the design principles of current systems and optimize their specific functions. We apply ultrafast mid-IR polarization-dependent pump-probe spectroscopy to probe the effects of two Pd6L4 self-assembled nanocages on the properties and dynamics of fluxional group-VIII metal carbonyl guest molecules. We find that the interactions between the Pd6L4 nanocages and guest molecules act to alter the ultrafast dynamics of the guests, restricting rotational diffusional motion and decreasing the vibrational lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA