Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Mol Cell Biochem ; 378(1-2): 117-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23459830

RESUMO

ING proteins are tumor suppressors involved in the regulation of gene transcription, cell cycle arrest, apoptosis, and senescence. Here, we show that ING1b expression is upregulated by several DNA-damaging agents, in a p53-independent manner. ING1b stimulates DNA repair of a variety of DNA lesions requiring activation of multiple DNA repair pathways. Moreover, Ing1(-/-) cells showed impaired genomic DNA repair after H2O2 and neocarzinostatin treatment and this defect was reverted by overexpression of ING1b. Two tumor-derived ING1 mutants failed to promote DNA repair highlighting the physiological importance of the integrity of the PHD domain for ING1b DNA repair activity and suggesting a role in the prevention of tumor progression. Ing(-/-) cells showed higher basal levels of γ-H2AX and, upon DNA damage, γ-H2AX increase was greater and with faster kinetics compared to wild-type cells. Chromatin relaxation by Trichostatin A led to an exacerbated damage signal in both types of cells, but this effect was dependent on Ing1 status, and more pronounced in wild-type cells. Our results suggest that ING1 acts at early stages of the DNA damage response activating a variety of repair mechanisms and that this function of ING1 is targeted in tumors.


Assuntos
Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Expressão Gênica , Genoma Humano , Instabilidade Genômica , Histonas/metabolismo , Humanos , Proteína 1 Inibidora do Crescimento , Camundongos , Mutação de Sentido Incorreto , Isoformas de Proteínas/fisiologia , Proteínas Quinases/metabolismo , Regulação para Cima
3.
Cell Rep ; 36(2): 109372, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260908

RESUMO

B lymphocytes are exquisitely sensitive to fluctuations in nutrient signaling by the Rag GTPases, and 15% of follicular lymphomas (FLs) harbor activating mutations in RRAGC. Hence, a potential therapeutic approach against malignant B cells is to inhibit Rag GTPase signaling, but because such inhibitors are still to be developed, efficacy and safety remain unknown. We generated knockin mice expressing a hypomorphic variant of RagC (Q119L); RagCQ119L/+ mice are viable and show attenuated nutrient signaling. B lymphocyte activation is cell-intrinsically impaired in RagCQ119L/+ mice, which also show significant suppression of genetically induced lymphomagenesis and autoimmunity. Surprisingly, no overt systemic trade-offs or phenotypic alterations caused by partial suppression of nutrient signaling are seen in other organs, and RagCQ119L/+ mice show normal longevity and normal age-dependent health decline. These results support the efficacy and safety of moderate inhibition of nutrient signaling against pathological B cells.


Assuntos
Linfócitos B/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Linfoma/imunologia , Linfoma/patologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Animais , Feminino , Técnicas de Introdução de Genes , Heterozigoto , Imunidade Humoral , Longevidade , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Mutantes , Mutação/genética
4.
Mol Cancer Ther ; 19(8): 1751-1760, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32499301

RESUMO

Metastasis development is the leading cause of cancer-related mortality in pancreatic ductal adenocarcinoma (PDAC) and yet, few preclinical systems to recapitulate its full spreading process are available. Thus, modeling of tumor progression to metastasis is urgently needed. In this work, we describe the generation of highly metastatic PDAC patient-derived xenograft (PDX) mouse models and subsequent single-cell RNA-sequencing (RNA-seq) of circulating tumor cells (CTC), isolated by human HLA sorting, to identify altered signaling and metabolic pathways, as well as potential therapeutic targets. The mouse models developed liver and lung metastasis with a high reproducibility rate. Isolated CTCs were highly tumorigenic, had metastatic potential, and single-cell RNA-seq showed that their expression profiles clustered separately from those of their matched primary and metastatic tumors and were characterized by low expression of cell-cycle and extracellular matrix-associated genes. CTC transcriptomics identified survivin (BIRC5), a key regulator of mitosis and apoptosis, as one of the highest upregulated genes during metastatic spread. Pharmacologic inhibition of survivin with YM155 or survivin knockdown promoted cell death in organoid models as well as anoikis, suggesting that survivin facilitates cancer cell survival in circulation. Treatment of metastatic PDX models with YM155 alone and in combination with chemotherapy hindered the metastatic development resulting in improved survival. Metastatic PDX mouse model development allowed the identification of survivin as a promising therapeutic target to prevent the metastatic dissemination in PDAC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/patologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Apoptose , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Metab ; 1(8): 775-789, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31579886

RESUMO

The humoral immune response demands that B cells undergo a sudden anabolic shift and high cellular nutrient levels which are required to sustain the subsequent proliferative burst. Follicular lymphoma (FL) originates from B cells that have participated in the humoral response, and 15% of FL samples harbor point, activating mutations in RRAGC, an essential activator of mTORC1 downstream of the sensing of cellular nutrients. The impact of recurrent RRAGC mutations in B cell function and lymphoma is unexplored. RRAGC mutations, targeted to the endogenous locus in mice, confer a partial insensitivity to nutrient deprivation, but strongly exacerbate B cell responses and accelerate lymphomagenesis, while creating a selective vulnerability to pharmacological inhibition of mTORC1. This moderate increase in nutrient signaling synergizes with paracrine cues from the supportive T cell microenvironment that activates B cells via the PI3K-Akt-mTORC1 axis. Hence, Rragc mutations sustain induced germinal centers and murine and human FL in the presence of decreased T cell help. Our results support a model in which activating mutations in the nutrient signaling pathway foster lymphomagenesis by corrupting a nutrient-dependent control over paracrine signals from the T cell microenvironment.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Ativação Linfocitária , Linfoma Folicular/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Humanos , Linfoma Folicular/patologia , Camundongos , Camundongos Transgênicos
6.
Clin Cancer Res ; 23(21): 6661-6672, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765324

RESUMO

Purpose:MET exon 14 deletion (METex14 del) mutations represent a novel class of non-small cell lung cancer (NSCLC) driver mutations. We evaluated glesatinib, a spectrum-selective MET inhibitor exhibiting a type II binding mode, in METex14 del-positive nonclinical models and NSCLC patients and assessed its ability to overcome resistance to type I MET inhibitors.Experimental Design: As most MET inhibitors in clinical development bind the active site with a type I binding mode, we investigated mechanisms of acquired resistance to each MET inhibitor class utilizing in vitro and in vivo models and in glesatinib clinical trials.Results: Glesatinib inhibited MET signaling, demonstrated marked regression of METex14 del-driven patient-derived xenografts, and demonstrated a durable RECIST partial response in a METex14 del mutation-positive patient enrolled on a glesatinib clinical trial. Prolonged treatment of nonclinical models with selected MET inhibitors resulted in differences in resistance kinetics and mutations within the MET activation loop (i.e., D1228N, Y1230C/H) that conferred resistance to type I MET inhibitors, but remained sensitive to glesatinib. In vivo models exhibiting METex14 del/A-loop double mutations and resistance to type I inhibitors exhibited a marked response to glesatinib. Finally, a METex14 del mutation-positive NSCLC patient who responded to crizotinib but later relapsed, demonstrated a mixed response to glesatinib including reduction in size of a MET Y1230H mutation-positive liver metastasis and concurrent loss of detection of this mutation in plasma DNA.Conclusions: Together, these data demonstrate that glesatinib exhibits a distinct mechanism of target inhibition and can overcome resistance to type I MET inhibitors. Clin Cancer Res; 23(21); 6661-72. ©2017 AACR.


Assuntos
Antineoplásicos/uso terapêutico , Benzenoacetamidas/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/uso terapêutico , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Crizotinibe , Éxons/genética , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-met/genética , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Piridinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Clin Cancer Res ; 21(21): 4811-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26169969

RESUMO

PURPOSE: nab-Paclitaxel plus gemcitabine was superior to gemcitabine alone for patients with metastatic pancreatic cancer (MPC) in the phase III MPACT trial. This study evaluated the association of secreted protein acidic and rich in cysteine (SPARC) levels with efficacy as an exploratory endpoint. EXPERIMENTAL DESIGN: Patients with previously untreated MPC (N = 861) received nab-paclitaxel plus gemcitabine or gemcitabine alone. Baseline SPARC level was measured in the tumor stroma and epithelia (archival biopsies) and plasma. Experiments were performed in pancreatic cancer mouse models in which SPARC was intact or deleted. RESULTS: SPARC was measured in the tumor stroma of 256 patients (30%), the tumor epithelia of 301 patients (35%), and plasma of 343 patients (40%). Stroma-evaluable samples were from metastases (71%), from the pancreas (11%), or of unidentifiable origin (insufficient tissue to determine; 17%). For all patients, stromal SPARC level [high (n = 71) vs. low (n = 185)] was not associated with overall survival (OS; HR, 1.019; P = 0.903); multivariate analysis confirmed this lack of association. There was no association between stromal SPARC level and OS in either treatment arm. Neither tumor epithelial SPARC nor plasma SPARC was associated with OS. Results from a SPARC knockout mouse model treated with nab-paclitaxel plus gemcitabine revealed no correlation between SPARC expression and tumor progression or treatment efficacy. CONCLUSIONS: SPARC levels were not associated with efficacy in patients with MPC. This exploratory analysis does not support making treatment decisions regarding nab-paclitaxel plus gemcitabine or gemcitabine alone in MPC based on SPARC expression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Desoxicitidina/análogos & derivados , Expressão Gênica , Osteonectina/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Albuminas/administração & dosagem , Animais , Biomarcadores , Desoxicitidina/administração & dosagem , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Camundongos Knockout , Metástase Neoplásica , Osteonectina/sangue , Osteonectina/metabolismo , Paclitaxel/administração & dosagem , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
8.
Genome Med ; 6(4): 27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24739241

RESUMO

BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process.

9.
Curr Drug Targets ; 10(5): 406-17, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19442113

RESUMO

Cellular senescence is an effective anti-tumor barrier that acts by restraining the uncontrolled proliferation of cells carrying potentially oncogenic alterations. ING proteins are putative tumor suppressor proteins functionally linked to the p53 pathway and to chromatin regulation. ING proteins exert their tumor-protective action through different types of responses. Here, we review the evidence on the participation of ING proteins, mainly ING1 and ING2, in the implementation of the senescent response. The currently available data support an important role of ING proteins as regulators of senescence, in connection with the p53 pathway and chromatin organization.


Assuntos
Senescência Celular/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Cromatina/metabolismo , Humanos , Neoplasias/metabolismo
11.
J Biol Chem ; 282(42): 31060-7, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17693408

RESUMO

ING proteins are putative tumor suppressor proteins linked to the p53 pathway and to the chromatin modification machinery. Here we have analyzed the role of the products of the murine Ing1 locus in cellular tumor-protective responses, using mouse primary fibroblasts where the Ing1 locus has been inactivated by the integration of a betageo cassette. We show that Ing1-deficient mouse embryonic fibroblasts display a defective senescence-like antiproliferative response against oncogenic Ras, affecting several senescence-specific markers. This phenotype is accompanied by a reduced accumulation of p53, which can be explained by the reduced basal p53 protein stability in the Ing1-deficient background. Ing1 deficiency also results in defects in the appearance of heterochromatic marks upon expression of oncogenic Ras, suggestive of impaired heterochromatin formation during oncogene-induced senescence. Our results support an important role for the Ing1 locus in protection against oncogenic stress in vivo, both as a mediator of p53 activation and as a regulator of chromatin remodeling processes.


Assuntos
Transformação Celular Neoplásica/metabolismo , Montagem e Desmontagem da Cromatina , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Senescência Celular/genética , Montagem e Desmontagem da Cromatina/genética , Embrião de Mamíferos/patologia , Fibroblastos/patologia , Heterocromatina/genética , Proteína 1 Inibidora do Crescimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Locos de Características Quantitativas/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA