Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(3): 360-366, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32780838

RESUMO

MOTIVATION: Proteins are ubiquitous molecules whose function in biological processes is determined by their 3D structure. Experimental identification of a protein's structure can be time-consuming, prohibitively expensive and not always possible. Alternatively, protein folding can be modeled using computational methods, which however are not guaranteed to always produce optimal results. GraphQA is a graph-based method to estimate the quality of protein models, that possesses favorable properties such as representation learning, explicit modeling of both sequential and 3D structure, geometric invariance and computational efficiency. RESULTS: GraphQA performs similarly to state-of-the-art methods despite using a relatively low number of input features. In addition, the graph network structure provides an improvement over the architecture used in ProQ4 operating on the same input features. Finally, the individual contributions of GraphQA components are carefully evaluated. AVAILABILITY AND IMPLEMENTATION: PyTorch implementation, datasets, experiments and link to an evaluation server are available through this GitHub repository: github.com/baldassarreFe/graphqa. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Neurais de Computação , Proteínas , Dobramento de Proteína
2.
Bioinformatics ; 35(15): 2677-2679, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590407

RESUMO

MOTIVATION: Residue contact prediction was revolutionized recently by the introduction of direct coupling analysis (DCA). Further improvements, in particular for small families, have been obtained by the combination of DCA and deep learning methods. However, existing deep learning contact prediction methods often rely on a number of external programs and are therefore computationally expensive. RESULTS: Here, we introduce a novel contact predictor, PconsC4, which performs on par with state of the art methods. PconsC4 is heavily optimized, does not use any external programs and therefore is significantly faster and easier to use than other methods. AVAILABILITY AND IMPLEMENTATION: PconsC4 is freely available under the GPL license from https://github.com/ElofssonLab/PconsC4. Installation is easy using the pip command and works on any system with Python 3.5 or later and a GCC compiler. It does not require a GPU nor special hardware. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Software
3.
Proteins ; 87(12): 1361-1377, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31265154

RESUMO

Methods to reliably estimate the accuracy of 3D models of proteins are both a fundamental part of most protein folding pipelines and important for reliable identification of the best models when multiple pipelines are used. Here, we describe the progress made from CASP12 to CASP13 in the field of estimation of model accuracy (EMA) as seen from the progress of the most successful methods in CASP13. We show small but clear progress, that is, several methods perform better than the best methods from CASP12 when tested on CASP13 EMA targets. Some progress is driven by applying deep learning and residue-residue contacts to model accuracy prediction. We show that the best EMA methods select better models than the best servers in CASP13, but that there exists a great potential to improve this further. Also, according to the evaluation criteria based on local similarities, such as lDDT and CAD, it is now clear that single model accuracy methods perform relatively better than consensus-based methods.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Bases de Dados de Proteínas , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína
4.
Proteins ; 86(6): 654-663, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524250

RESUMO

Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates.


Assuntos
Modelos Moleculares , Proteínas/química , Algoritmos , Bases de Dados de Proteínas , Aprendizado de Máquina , Conformação Proteica , Software , Relação Estrutura-Atividade
5.
Proteins ; 86 Suppl 1: 361-373, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28975666

RESUMO

Methods to reliably estimate the quality of 3D models of proteins are essential drivers for the wide adoption and serious acceptance of protein structure predictions by life scientists. In this article, the most successful groups in CASP12 describe their latest methods for estimates of model accuracy (EMA). We show that pure single model accuracy estimation methods have shown clear progress since CASP11; the 3 top methods (MESHI, ProQ3, SVMQA) all perform better than the top method of CASP11 (ProQ2). Although the pure single model accuracy estimation methods outperform quasi-single (ModFOLD6 variations) and consensus methods (Pcons, ModFOLDclust2, Pcomb-domain, and Wallner) in model selection, they are still not as good as those methods in absolute model quality estimation and predictions of local quality. Finally, we show that when using contact-based model quality measures (CAD, lDDT) the single model quality methods perform relatively better.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Proteínas/química , Bases de Dados de Proteínas , Humanos , Alinhamento de Sequência , Análise de Sequência de Proteína
6.
Bioinformatics ; 33(14): i23-i29, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28881974

RESUMO

MOTIVATION: Accurate contact predictions can be used for predicting the structure of proteins. Until recently these methods were limited to very big protein families, decreasing their utility. However, recent progress by combining direct coupling analysis with machine learning methods has made it possible to predict accurate contact maps for smaller families. To what extent these predictions can be used to produce accurate models of the families is not known. RESULTS: We present the PconsFold2 pipeline that uses contact predictions from PconsC3, the CONFOLD folding algorithm and model quality estimations to predict the structure of a protein. We show that the model quality estimation significantly increases the number of models that reliably can be identified. Finally, we apply PconsFold2 to 6379 Pfam families of unknown structure and find that PconsFold2 can, with an estimated 90% specificity, predict the structure of up to 558 Pfam families of unknown structure. Out of these, 415 have not been reported before. AVAILABILITY AND IMPLEMENTATION: Datasets as well as models of all the 558 Pfam families are available at http://c3.pcons.net/ . All programs used here are freely available. CONTACT: arne@bioinfo.se.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Conformação Proteica , Software , Aprendizado de Máquina , Sensibilidade e Especificidade
7.
Bioinformatics ; 33(10): 1578-1580, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28052925

RESUMO

SUMMARY: Protein quality assessment is a long-standing problem in bioinformatics. For more than a decade we have developed state-of-art predictors by carefully selecting and optimising inputs to a machine learning method. The correlation has increased from 0.60 in ProQ to 0.81 in ProQ2 and 0.85 in ProQ3 mainly by adding a large set of carefully tuned descriptions of a protein. Here, we show that a substantial improvement can be obtained using exactly the same inputs as in ProQ2 or ProQ3 but replacing the support vector machine by a deep neural network. This improves the Pearson correlation to 0.90 (0.85 using ProQ2 input features). AVAILABILITY AND IMPLEMENTATION: ProQ3D is freely available both as a webserver and a stand-alone program at http://proq3.bioinfo.se/. CONTACT: arne@bioinfo.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Redes Neurais de Computação , Conformação Proteica , Software , Máquina de Vetores de Suporte , Modelos Moleculares
8.
Bioinformatics ; 33(18): 2859-2866, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28535189

RESUMO

MOTIVATION: A few years ago it was shown that by using a maximum entropy approach to describe couplings between columns in a multiple sequence alignment it is possible to significantly increase the accuracy of residue contact predictions. For very large protein families with more than 1000 effective sequences the accuracy is sufficient to produce accurate models of proteins as well as complexes. Today, for about half of all Pfam domain families no structure is known, but unfortunately most of these families have at most a few hundred members, i.e. are too small for such contact prediction methods. RESULTS: To extend accurate contact predictions to the thousands of smaller protein families we present PconsC3, a fast and improved method for protein contact predictions that can be used for families with even 100 effective sequence members. PconsC3 outperforms direct coupling analysis (DCA) methods significantly independent on family size, secondary structure content, contact range, or the number of selected contacts. AVAILABILITY AND IMPLEMENTATION: PconsC3 is available as a web server and downloadable version at http://c3.pcons.net . The downloadable version is free for all to use and licensed under the GNU General Public License, version 2. At this site contact predictions for most Pfam families are also available. We do estimate that more than 4000 contact maps for Pfam families of unknown structure have more than 50% of the top-ranked contacts predicted correctly. CONTACT: arne@bioinfo.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Estrutura Secundária de Proteína , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software
9.
J Mol Biol ; 431(13): 2442-2448, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30796988

RESUMO

At present, about half of the protein domain families lack a structural representative. However, in the last decade, predicting contact maps and using these to model the tertiary structure for these protein families have become an alternative approach to gain structural insight. At present, reliable models for several hundreds of protein families have been created using this approach. To increase the use of this approach, we present PconsFam, which is an intuitive and interactive database for predicted contact maps and tertiary structure models of the entire Pfam database. By modeling all possible families, both with and without a representative structure, using the PconsFold2 pipeline, and running quality assessment estimator on the models, we predict an estimation for how confident the contact maps and structures are for each family.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas/química , Modelos Moleculares , Família Multigênica , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
Curr Protoc Bioinformatics ; 66(1): e75, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063641

RESUMO

In spite of the fact that there has been a significant increase in the number of solved protein structures, structural information is missing for many proteins. Although structural information is codified in the amino acid sequence, computational prediction using only this information is still an unsolved problem. However, one successful method to model a protein's structure starting from the primary sequence is to use contact prediction derived from multiple sequence alignment (MSA). Here we use our contact predictor PconsC4 to generate a list of probable contacts between residues in the primary sequences. These contacts are then used together with the secondary structure prediction as constraints for the CONFOLD folding method. In this way, a 3D protein model can be built starting directly from the primary sequence. © 2019 by John Wiley & Sons, Inc.


Assuntos
Algoritmos , Biologia Computacional/métodos , Proteínas/química , Modelos Moleculares , Estrutura Secundária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA