Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain ; 139(Pt 12): 3109-3120, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742667

RESUMO

Progressive myoclonus epilepsy is a heterogeneous group of disorders characterized by myoclonic and tonic-clonic seizures, ataxia and cognitive decline. We here present two affected brothers. At 9 months of age the elder brother developed ataxia and myoclonic jerks. In his second year he lost the ability to walk and talk, and he developed drug-resistant progressive myoclonus epilepsy. The cerebrospinal fluid level of glutamate was decreased while glutamine was increased. His younger brother manifested similar symptoms from 6 months of age. By exome sequencing of the proband we identified a novel homozygous frameshift variant in the potassium channel tetramerization domain 7 (KCTD7) gene (NM_153033.1:c.696delT: p.F232fs), which results in a truncated protein. The identified F232fs variant is inherited in an autosomal recessive manner, and the healthy consanguineous parents carry the variant in a heterozygous state. Bioinformatic analyses and structure modelling showed that KCTD7 is a highly conserved protein, structurally similar to KCTD5 and several voltage-gated potassium channels, and that it may form homo- or heteromultimers. By heterologous expression in Xenopus laevis oocytes, we demonstrate that wild-type KCTD7 hyperpolarizes cells in a K+ dependent manner and regulates activity of the neuronal glutamine transporter SAT2 (Slc38a2), while the F232fs variant impairs K+ fluxes and obliterates SAT2-dependent glutamine transport. Characterization of four additional disease-causing variants (R94W, R184C, N273I, Y276C) bolster these results and reveal the molecular mechanisms involved in the pathophysiology of KCTD7-related progressive myoclonus epilepsy. Thus, our data demonstrate that KCTD7 has an impact on K+ fluxes, neurotransmitter synthesis and neuronal function, and that malfunction of the encoded protein may lead to progressive myoclonus epilepsy.


Assuntos
Glutamina/metabolismo , Epilepsias Mioclônicas Progressivas/genética , Neurônios/metabolismo , Canais de Potássio/genética , Potássio/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Pré-Escolar , Consanguinidade , Evolução Fatal , Humanos , Masculino , Oócitos , Linhagem , Arábia Saudita , Irmãos , Xenopus laevis
2.
Scand J Pain ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607365

RESUMO

OBJECTIVES: Pain assessment in anesthetized and non-communicative patients remains a challenge. Clinical signs such as tachycardia, hypertension, sweat and tears, have a low specificity for pain and should therefore ideally be replaced by more specific monitoring techniques. Skin conductance variability has been demonstrated to establish a patients' sensitivity to pain, but may be influenced by temperature changes that leads to profuse sweating. The aim of this pilot study was to test skin conductance changes during sudden temperature changes due to hyperthermic intraperitoneal chemotherapy (HIPEC) perfusation. METHODS: We investigated skin conductance algesimeter (SCA) in ten consecutive patients undergoing cytoreductive surgery and HIPEC. Results from the SCA was compared to other standard physiological variables at seven time points during the surgical procedure, in particular during the period with hyperthermic intraabdominal perfusion leading to an increase in the patients core temperature. RESULTS: Nine out of ten patients had an increase in the SCA measurements during the HIPEC phase correlating the increase in temperature. CONCLUSION: SCA is unreliable to detect increased pain sensation during sudden perioperative temperature changes in adult patients.


Assuntos
Percepção da Dor , Dor , Adulto , Humanos , Projetos Piloto , Temperatura , Medição da Dor
3.
Neuropharmacology ; 161: 107789, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31574264

RESUMO

Amino acids are essential for cellular protein synthesis, growth, metabolism, signaling and in stress responses. Cell plasma membranes harbor specialized transporters accumulating amino acids to support a variety of cellular biochemical pathways. Several transporters for neutral amino acids have been characterized. However, Slc38a2 (also known as SA1, SAT2, ATA2, SNAT2) representing the classical transport system A activity stands in a unique position: Being a secondarily active transporter energized by the electrochemical gradient of Na+, it creates steep concentration gradients for amino acids such as glutamine: this may subsequently drive the accumulation of additional neutral amino acids through exchange via transport systems ASC and L. Slc38a2 is ubiquitously expressed, yet in a cell-specific manner. In this review, we show that Slc38a2 is regulated at the transcriptional and translational levels as well as by ions and proteins through direct interactions. We describe how Slc38a2 senses amino acid availability and passes this onto intracellular signaling pathways and how it regulates protein synthesis, cellular proliferation and apoptosis through the mechanistic (mammalian) target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways. Furthermore, we review how this extensively regulated transporter contributes to cellular osmoadaptation and how it is regulated by endoplasmic reticulum stress and various hormonal stimuli to promote cellular metabolism, cellular signaling and cell survival. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Assuntos
Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Transdução de Sinais/genética , Animais , Regulação da Expressão Gênica , Humanos , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA