Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(6): 2280-4, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24418938

RESUMO

Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.


Assuntos
Grafite/química , Nitrogênio/química , Óxidos/química , Capacitância Elétrica , Eletroquímica , Eletrodos
2.
ACS Appl Mater Interfaces ; 15(23): 28332-28348, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37253453

RESUMO

The realization of the broad range of application of MXenes relies on the successful and reproducible synthesis of quality materials of tailored properties. To date, most MXenes have been produced making use of acid-based etching methods, yet an in-depth understanding of etching processes is lacking. Herein, we have engaged in a comprehensive study of the multiple variables involved in the synthesis of V2CTx with focus on the properties of etched materials. Two main sets of experiments were considered, each using a different V2AlC precursor and a range of synthesis variables including reaction time and temperature, mixing rate, and type of acid. Correlations of synthesis conditions-materials properties were investigated using a broad range of characterization techniques including analytical methods, scanning and transmission electron microscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Findings indicated the crucial relevance of properties of the MAX precursor such as elemental composition, particle size, and crystal structure on etching processes and properties of etched materials. Particularly, depending on the MAX precursor, two etching patterns were identified, core-shell and plate-by-plate, the latter describing a more efficient etching. Combined studies of elemental composition, crystal structure, and yield quantification allowed us to evaluate the effectiveness of etching processes. XRD studies revealed key crystal-structure-type of acid correlations showing advantages of using a HF/HCl mix over only HF. Analytical methods XRD and XPS delivered insights into undergoing chemical processes and their influence on bulk and surface chemistry of etched materials. The relevance for reaction kinetics of highly correlated variables such as reaction vessel dimensions, mixing efficiency, and reaction temperature was recognized. For the first time, a MXene synthesis has been investigated comprehensively highlighting its multivariable nature and the high variable intercorrelation, opening up venues for further investigation on MAX and MXene synthesis.

3.
Adv Mater ; 28(29): 6104-35, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27254831

RESUMO

The unique properties and great variety of two-dimensional (2D) nanomaterials make them highly attractive for energy storage applications. Here, an insight into the progress made towards the application of 2D nanomaterials for capacitive energy storage is provided. Synthesis methods, and electrochemical performance of various classes of 2D nanomaterials, particularly based on graphene, transition metal oxides, dichalcogenides, and carbides, are presented. The factors that directly influence capacitive performance are discussed throughout the text and include nanosheet composition, morphology and texture, electrode architecture, and device configuration. Recent progress in the fabrication of 2D-nanomaterials-based microsupercapacitors and flexible and free-standing supercapacitors is presented. The main electrode manufacturing techniques with emphasis on scalability and cost-effectiveness are discussed, and include laser scribing, printing, and roll-to-roll manufacture. Various issues that prevent the use of the full energy-storage potential of 2D nanomaterials and how they have been tackled are discussed, and include nanosheet aggregation and the low electrical conductivity of some 2D nanomaterials. Particularly, the design of hybrid and hierarchical 2D and 3D structures based on 2D nanomaterials is presented. Other challenges and opportunities are discussed and include: control of nanosheets size and thickness, chemical and electrochemical instability, and scale-up of electrode films.

4.
Sci Rep ; 4: 7555, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25532123

RESUMO

Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.

5.
ACS Nano ; 8(9): 9567-79, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25199042

RESUMO

Here we demonstrate significant improvements in the performance of supercapacitor electrodes based on 2D MnO2 nanoplatelets by the addition of carbon nanotubes. Electrodes based on MnO2 nanoplatelets do not display high areal capacitance because the electrical properties of such films are poor, limiting the transport of charge between redox sites and the external circuit. In addition, the mechanical strength is low, limiting the achievable electrode thickness, even in the presence of binders. By adding carbon nanotubes to the MnO2-based electrodes, we have increased the conductivity by up to 8 orders of magnitude, in line with percolation theory. The nanotube network facilitates charge transport, resulting in large increases in capacitance, especially at high rates, around 1 V/s. The increase in MnO2 specific capacitance scaled with nanotube content in a manner fully consistent with percolation theory. Importantly, the mechanical robustness was significantly enhanced, allowing the fabrication of electrodes that were 10 times thicker than could be achieved in MnO2-only films. This resulted in composite films with areal capacitances up to 40 times higher than could be achieved with MnO2-only electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA