Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Psychiatry ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003412

RESUMO

The single nucleotide polymorphism rs13166360, causing a substitution of valine (Val) 147 to leucine (Leu) in the adenylyl cyclase 2 (ADCY2), has previously been associated with bipolar disorder (BD). Here we show that the disease-associated ADCY2 missense mutation diminishes the enzyme´s capacity to generate the second messenger 3',5'-cylic adenosine monophosphate (cAMP) by altering its subcellular localization. We established mice specifically carrying the Val to Leu substitution using CRISPR/Cas9-based gene editing. Mice homozygous for the Leu variant display symptoms of a mania-like state accompanied by cognitive impairments. Mutant animals show additional characteristic signs of rodent mania models, i.e., they are hypersensitive to amphetamine, the observed mania-like behaviors are responsive to lithium treatment and the Val to Leu substitution results in a shifted excitatory/inhibitory synaptic balance towards more excitation. Exposure to chronic social defeat stress switches homozygous Leu variant carriers from a mania- to a depressive-like state, a transition which is reminiscent of the alternations characterizing the symptomatology in BD patients. Single-cell RNA-seq (scRNA-seq) revealed widespread Adcy2 mRNA expression in numerous hippocampal cell types. Differentially expressed genes particularly identified from glutamatergic CA1 neurons point towards ADCY2 variant-dependent alterations in multiple biological processes including cAMP-related signaling pathways. These results validate ADCY2 as a BD risk gene, provide insights into underlying disease mechanisms, and potentially open novel avenues for therapeutic intervention strategies.

2.
Mol Psychiatry ; 26(7): 3060-3076, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33649453

RESUMO

Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.


Assuntos
Sistema Hipotálamo-Hipofisário , Núcleo Hipotalâmico Paraventricular , Estresse Fisiológico , Proteínas de Ligação a Tacrolimo , Animais , Corticosterona , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Proteínas de Ligação a Tacrolimo/genética
3.
Mol Cell Biochem ; 476(4): 1825-1848, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459980

RESUMO

Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas , Cardenolídeos/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Citotoxinas/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia
4.
J Cell Physiol ; 234(1): 509-520, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29968920

RESUMO

New compounds with promising antidiabetic activity were synthesized. For the first time, a portion of the glibenclamide molecule was bound to a part of the core structure of thiazolidinedione to evaluate insulin secretagogue activity. Following studies in our laboratory, 4-{2-[2-(3,4-dichlorophenyl)-4-oxo-1,3-thiazolidin-3-yl]ethyl}benzene-1-sulfonamide (DTEBS) was selected to evaluate glycemia using the glucose tolerance test and insulin secretagogue activity by E.L.I.S.A. The mechanism of action of this compound was studied by 45 Ca2+ influx and whole-cell patch-clamp in rat pancreatic isolated islets. Furthermore, AGE formation in vitro was investigated. We herein show that this novel hybrid compound (DTEBS) exhibits an insulinogenic index and a profile of serum insulin secretion able to maintain glucose homeostasis. Its mechanism of action is mediated by ATP-sensitive potassium channels (KATP) and L-type voltage-dependent calcium channels (VDCC) and by activating protein kinase C and A (PKC and PKA). In addition, the stimulatory action of the compound on calcium influx and insulin secretion indicates that the potentiation of voltage-sensitive K+ currents (Kv) is due to the repolarization phase of the action potential after secretagogue excitation-secretion in pancreatic islets. Furthermore, under these experimental conditions, the compound did not induce toxicity and the in vitro late response of the compound to protein glycation reinforces its use to prevent complications of diabetes. DTEBS exerts an insulin secretagogue effect by triggering KATP, VDCC, and Kv ionic currents, possibly via PKC and PKA pathway signal transduction, in beta-cells. Furthermore, DTEBS may hold potential for delaying the late complications of diabetes.


Assuntos
Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Compostos de Sulfonilureia/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Teste de Tolerância a Glucose , Glibureto/química , Glibureto/farmacologia , Humanos , Hipoglicemiantes/síntese química , Insulina/biossíntese , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Canais KATP/genética , Técnicas de Patch-Clamp , Proteína Quinase C/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfonilureia/síntese química , Tiazolidinedionas/síntese química , Tiazolidinedionas/farmacologia
5.
J Physiol ; 592(16): 3413-7, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24591573

RESUMO

In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Neurotransmissores/metabolismo , Comunicação Parácrina , Animais , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/inervação
6.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260577

RESUMO

Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.

7.
Biomed Phys Eng Express ; 9(6)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725948

RESUMO

Sertoli cells are essential for the male reproduction system as they provide morphological support and nutrients for germ cells to guarantee ongoing spermatogenesis. The aim of this work was to predict the electrical properties at the plasma membrane that trigger Sertoli cell rapid responses by involving ionic channels. The rapid responses of Sertoli cells in culture were monitored using patch clamp electrical measurement and compared to data obtained using pharmacological tools (from intact seminiferous tubules). A mathematical model was used to define the roles of potassium channels and the ATP-dependent Na+/K+pump in these responses. Mathematical data verification was also performed to determine the resting and hormonal stimulated membrane potentials of Sertoli cells in the intact seminiferous tubules and of Sertoli cells in culture (patch clamp measurements). The prediction of these data based on mathematical modeling demonstrated, for the first time, the involvement of potassium channels and the activation of Na+/K+pump in the hyperpolarization of Sertoli cells and their consequent rapid responses. Moreover, the mathematical analysis showing the involvement of ionic balance in the rapid responses of these cells to hormones, such as follicle-stimulating hormone, is consistent with previous reports obtained using pharmacological techniques in Sertoli cells. Thus, the validation of such data is reliable and represents a first step in the proposition for a mathematical model to predict rapid responses of Sertoli cells to hormonal stimuli.


Assuntos
Células de Sertoli , Transdução de Sinais , Masculino , Humanos , Células de Sertoli/metabolismo , Potenciais da Membrana , Membrana Celular/metabolismo , Canais de Potássio/metabolismo
8.
Am J Physiol Cell Physiol ; 302(8): C1073-82, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22301059

RESUMO

Sodium-glucose cotransporters (SGLTs) are secondary active transporters belonging to the SLC5 gene family. SGLT1, a well-characterized member of this family, electrogenically transports glucose and galactose. Human SGLT3 (hSGLT3), despite sharing a high amino acid identity with human SGLT1 (hSGLT1), does not transport sugar, although functions as a sugar sensor. In contrast to humans, two different genes in mice and rats code for two different SGLT3 proteins, SGLT3a and SGLT3b. We previously cloned and characterized mouse SGLT3b (mSGLT3b) and showed that, while it does transport sugar like SGLT1, it likely functions as a physiological sugar sensor like hSGLT3. In this study, we cloned mouse SGLT3a (mSGLT3a) and characterized it by expressing it in Xenopus laevis oocytes and performing electrophysiology and sugar transport assays. mSGLT3a did not transport sugar, and sugars did not induce currents at pH 7.4, though acidic pH induced inward currents that increased in the presence of sugar. Moreover, mutation of residue 457 from glutamate to glutamine resulted in a Na(+)-dependent transport of sugar that was inhibited by phlorizin. To corroborate our results in oocytes, we expressed and characterized mSGLT3a in mammalian cells and confirmed our findings. In addition, we cloned, expressed, and characterized rat SGLT3a in oocytes and found characteristics similar to mSGLT3a. In summary, acidic pH induces currents in mSGLT3a, and sugar-induced currents are increased at acidic pH, but wild-type SGLT3a does not transport sugar.


Assuntos
Carboidratos/fisiologia , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Transporte Biológico/fisiologia , Células CHO , Cricetinae , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Intestino Delgado/fisiologia , Rim/metabolismo , Rim/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Mutação/genética , Florizina/farmacologia , Prótons , RNA Mensageiro/genética , RNA Ribossômico 18S/genética , Ratos , Sódio/metabolismo , Xenopus laevis
9.
Sci Adv ; 8(46): eabo1023, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383658

RESUMO

An adaptive stress response involves various mediators and circuits orchestrating a complex interplay of physiological, emotional, and behavioral adjustments. We identified a population of corticotropin-releasing hormone (CRH) neurons in the lateral part of the interstitial nucleus of the anterior commissure (IPACL), a subdivision of the extended amygdala, which exclusively innervate the substantia nigra (SN). Specific stimulation of this circuit elicits hyperactivation of the hypothalamic-pituitary-adrenal axis, locomotor activation, and avoidance behavior contingent on CRH receptor type 1 (CRHR1) located at axon terminals in the SN, which originate from external globus pallidus (GPe) neurons. The neuronal activity prompting the observed behavior is shaped by IPACLCRH and GPeCRHR1 neurons coalescing in the SN. These results delineate a previously unidentified tripartite CRH circuit functionally connecting extended amygdala and basal ganglia nuclei to drive locomotor activation and avoidance behavior.

10.
Diabetes ; 70(1): 17-26, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355306

RESUMO

Pancreatic islets are clusters of hormone-secreting endocrine cells that rely on intricate cell-cell communication mechanisms for proper function. The importance of multicellular cooperation in islet cell physiology was first noted nearly 30 years ago in seminal studies showing that hormone secretion from endocrine cell types is diminished when these cells are dispersed. These studies showed that reestablishing cellular contacts in so-called pseudoislets caused endocrine cells to regain hormone secretory function. This not only demonstrated that cooperation between islet cells is highly synergistic but also gave birth to the field of pancreatic islet organoids. Here we review recent advances related to the mechanisms of islet cell cross talk. We first describe new developments that revise current notions about purinergic and GABA signaling in islets. Then we comment on novel multicellular imaging studies that are revealing emergent properties of islet communication networks. We finish by highlighting and discussing recent synthetic approaches that use islet organoids of varied cellular composition to interrogate intraislet signaling mechanisms. This reverse engineering of islets not only will shed light on the mechanisms of intraislet signaling and define communication networks but also may guide efforts aimed at restoring islet function and ß-cell mass in diabetes.


Assuntos
Comunicação Celular/fisiologia , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Animais , Humanos , Ilhotas Pancreáticas/metabolismo
11.
Steroids ; 153: 108522, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622614

RESUMO

This study aimed to investigate the effects of the interaction between testosterone and retinol on the rapid responses of cultured Sertoli cells obtained from 10-day-old immature rat testes. Non-classical actions of testosterone and retinol were investigated, and the activities of L-type voltage-dependent calcium channels (L-VDCC) and voltage-dependent potassium channels (Kv) were determined by measuring 45Ca2+ influx in whole testis. Additionally, the effects of testosterone and retinol on these channels were studied in primary culture of Sertoli cells using the patch-clamp technique. 45Ca2+ influx was used to observe a dose-response curve on tissues treated with retinol and/or testosterone for 2 min (10-12, 10-9 and 10-6 M and 10-9 and 10-6 M), and a concentration of 10-6 M was selected to investigate the mechanism of action of testosterone and retinol on rapid responses. Participation of the L-VDCC and Kv channels was investigated using nifedipine and tetraethylammonium chloride (TEA) inhibitors, respectively. Both, testosterone and retinol act through non-classical mechanisms, stimulating 45Ca2+ influx in immature rat testes. The response to testosterone was abolished by nifedipine and TEA, whereas the effects of retinol were partially blocked by nifedipine and completely inhibited by TEA. Retinol amplified the testosterone-induced effect on 45Ca2+ influx in the testes, suggesting a crosstalk between rapid responses (calcium influx) and cell repolarization via activation of Kv channels. Whole-cell electrophysiology data demonstrated that testosterone and retinol increased voltage-dependent potassium currents (Kv) in Sertoli cells; inhibition of these responses by TEA confirmed the involvement of TEA-sensitive K+ channels in these effects. Taken together, we demonstrate, for the first time, crosstalk between testosterone and retinol that is mediated by a non-classical mechanism involving the L-VDCC-triggered cell depolarization and activation of repolarization by Kv currents in Sertoli cells. These ionic modulations play a physiological role in Sertoli cells and male fertility via stimulation of secretory activities.


Assuntos
Células de Sertoli/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testosterona/farmacologia , Vitamina A/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Testículo/metabolismo
12.
Steroids ; 74(2): 264-9, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073199

RESUMO

1,25D3 is critical for the maintenance of normal reproduction since reduced fertility is observed in male rats on a vitamin D-deficient diet. Vitamin D-deficient male rats have incomplete spermatogenesis and degenerative testicular changes. In the present study we have examined the ionic involvement and intracellular messengers of the stimulatory effect of 1,25D3 on amino acid accumulation in immature rat testis. 1,25D3 stimulates amino acid accumulation from 10(-12) to 10(-6) M by increasing the slope to reach a maximum value at 10(-10) M, as compared to the control group. No effect was observed at a lower dose (10(-13) M). Time-course showed an increase on amino acid accumulation after 15, 30, and 60 min of incubation with 1,25D3 (10(-10) M). 1,25D3 stimulated amino acid accumulation in 11-day-old rat testis but not in testis that were 20 days old. Cycloheximide totally blocked the 1,25D3 action on amino acid accumulation. Furthermore, a localized elevation of cAMP increased the stimulatory effect of 1,25D3 and the blockage of PKA nullified the action of the hormone. In addition, 1,25D3 action on amino acid accumulation was also mediated by ionic pathways, since verapamil and apamine diminished the hormone effect. The stimulatory effect of 1,25D3 on amino acid accumulation is age-dependent and specific to this steroidal hormone since testosterone was not able to change amino acid accumulation in both ages studied. This study provides evidence for a dual effect for 1,25D3, pointing to a genomic effect that can be triggered by PKA, as well as to a rapid response involving Ca2+/K+ channels on the plasma membrane.


Assuntos
Calcitriol/farmacologia , Testículo/efeitos dos fármacos , Testículo/metabolismo , beta-Alanina/análogos & derivados , Fatores Etários , Animais , Bucladesina/metabolismo , Carbazóis/farmacologia , Radioisótopos de Carbono/química , Relação Dose-Resposta a Droga , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Canais Iônicos/metabolismo , Masculino , Biossíntese de Proteínas , Pirróis/farmacologia , Ratos , Ratos Wistar , Testículo/crescimento & desenvolvimento , Testosterona/farmacologia , Fatores de Tempo , beta-Alanina/química , beta-Alanina/metabolismo
13.
Biochim Biophys Acta Biomembr ; 1861(4): 748-759, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639285

RESUMO

The functions of Sertoli cells, which structurally and functionally support ongoing spermatogenesis, are effectively modulated by thyroid hormones, amongst other molecules. We investigated the mechanism of action of rT3 on calcium (45Ca2+) uptake in Sertoli cells by means of in vitro acute incubation. In addition, we performed electrophysiological recordings of potassium efflux in order to understand the cell repolarization, coupled to the calcium uptake triggered by rT3. Our results indicate that rT3 induces nongenomic responses, as a rapid activation of whole-cell potassium currents in response to rT3 occurred in <5 min in Sertoli cells. In addition, the rT3 metabolite, T2, also exerted a rapid effect on calcium uptake in immature rat testis and in Sertoli cells. rT3 also modulated calcium uptake, which occurred within seconds via the action of selective ionic channels and the Na+/K+ ATPase pump. The rapid response of rT3 is essentially triggered by calcium uptake and cell repolarization, which appear to mediate the secretory functions of Sertoli cells.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Tri-Iodotironina/farmacologia , Animais , Masculino , Ratos , Ratos Wistar , Células de Sertoli
14.
Nat Metab ; 1(11): 1110-1126, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32432213

RESUMO

Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.


Assuntos
Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Humanos , Frações Subcelulares/metabolismo
15.
Curr Drug Targets ; 18(6): 641-650, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27316908

RESUMO

Glibenclamide is widely used and remains a cornerstone and an effective antihyperglycemic drug. After the casual discovery of its hypoglycemic potential, this compound was introduced for diabetes treatment. However, the long-term side effects reveal that glibenclamide should be replaced by new molecules able to maintain the health of ß-cells, protecting them from hyperstimulation/hyperexcitability, hyperinsulinemia, functional failure and cell death. The aim of this review was to highlight the main mechanism of action of glibenclamide and the influence of its derivatives, such as acylhydrazones, sulfonamides and sulfonylthioureas on ß-cells potassium and calcium channels for insulin secretion as well as the contribution of these new compounds to restore glucose homeostasis. Furthermore, the role of glibenclamide-based novel structures that promise less excitability of ß-cell in a long-term treatment with effectiveness and safety for diabetes therapy was discussed.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Canais de Potássio/efeitos dos fármacos , Animais , Glibureto/agonistas , Glibureto/química , Homeostase/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Células Secretoras de Insulina/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/farmacologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia
16.
Cell Rep ; 17(12): 3281-3291, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28009296

RESUMO

In the pancreatic islet, serotonin is an autocrine signal increasing beta cell mass during metabolic challenges such as those associated with pregnancy or high-fat diet. It is still unclear whether serotonin is relevant for regular islet physiology and hormone secretion. Here, we show that human beta cells produce and secrete serotonin when stimulated with increases in glucose concentration. Serotonin secretion from beta cells decreases cyclic AMP (cAMP) levels in neighboring alpha cells via 5-HT1F receptors and inhibits glucagon secretion. Without serotonergic input, alpha cells lose their ability to regulate glucagon secretion in response to changes in glucose concentration, suggesting that diminished serotonergic control of alpha cells can cause glucose blindness and the uncontrolled glucagon secretion associated with diabetes. Supporting this model, pharmacological activation of 5-HT1F receptors reduces glucagon secretion and has hypoglycemic effects in diabetic mice. Thus, modulation of serotonin signaling in the islet represents a drug intervention opportunity.


Assuntos
Diabetes Mellitus/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animais , AMP Cíclico/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/patologia , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Serotonina/biossíntese , Transdução de Sinais , Receptor 5-HT1F de Serotonina
17.
Life Sci ; 77(26): 3321-35, 2005 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15985269

RESUMO

Thyroid hormones have been shown to act at extra nuclear sites, inducing target cell responses by several mechanisms, frequently involving intracellular calcium concentration. It has also been reported that cytoskeletal proteins are a target for thyroid and steroid hormones and cytoskeletal rearrangements are observed during hormone-induced differentiation and development of rat testes. However, little is known about the effect of 3,5,3'-triiodo-L-thyronine (T3) on the intermediate filament (IF) vimentin in rat testes. In this study we investigated the immunocontent and in vitro phosphorylation of vimentin in the cytoskeletal fraction of immature rat testes after a short-term in vitro treatment with T3. Gonads were incubated with or without T3 and 32P orthophosphate for 30 min and the intermediate filament-enriched cytoskeletal fraction was extracted in a high salt Triton-containing buffer. Vimentin immunoreactivity was analyzed by immunoblotting and the in vitro 32P incorporation into this protein was measured. Results showed that 1 microM T3 was able to increase the vimentin immunoreactivity and in vitro phosphorylation in the cytoskeletal fraction without altering total vimentin immunocontent in immature rat testes. Besides, these effects were independent of active protein synthesis. The involvement of Ca2+-mediated mechanisms in vimentin phosphorylation was evident when specific channel blockers (verapamil and nifedipine) or chelating agents (EGTA and BAPTA) were added during pre-incubation and incubation of the testes with T3. The effect of T3 was prevented when Ca2+ influx was blocked or intracellular Ca2+ was chelated. These results demonstrate a rapid nongenomic Ca2+-dependent action of T3 in phosphorylating vimentin in immature rat testes.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Citoesqueleto/metabolismo , Testículo/metabolismo , Tri-Iodotironina/farmacologia , Vimentina/metabolismo , Animais , Animais Recém-Nascidos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Ratos Wistar , Testículo/crescimento & desenvolvimento , Tri-Iodotironina/metabolismo
18.
Life Sci ; 74(10): 1277-88, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14697410

RESUMO

The purpose of this study was to investigate the involvement of calcium in K+ currents and its effects on amino acid accumulation and on the membrane potential regulated by tri-iodo-L-thyronine (T3) in Sertoli cells. Immature rat testes were pre-incubated for 30 min in Krebs-Ringer bicarbonate buffer and incubated for 60 min in the presence of [14C]methylaminoisobutyric acid with and without T3 or T4 (dose-response curve). Specific channel blockers or chelating agents were added at different concentrations during pre-incubation and incubation periods to study the basal amino acid accumulation and a selected concentration of each drug was chosen to analyze the influence on the stimulatory hormone action. All amino acid accumulation experiments were carried out in a Dubnoff metabolic incubator at 32 degrees C, pH 7.4 and gassed with O2:CO2 (95:5; v/v). Seminiferous tubules from immature Sertoli cell-enriched testes were used for the electrophysiology experiments. Intracellular recording of the Sertoli cells was carried out in a chamber perfused with KRb with/without T3, T4 or blockers and the membrane potential was monitored. We found that T3 and T4 stimulated alpha-[1-14C] methylaminoisobutyric acid accumulation in immature rat testes and induced a membrane hyperpolarization in Sertoli cells. The action of T3 on amino acid accumulation and on the hyperpolarizing effect was inhibited by the K(+)-ATP channel blocker tolbutamide as well as the voltage-dependent Ca2+ channel blocker verapamil. These results clearly demonstrate for the first time the existence of an ionic mechanism related to Ca2+ and K+ fluxes in the rapid, nongenomic action of T3.


Assuntos
Aminoácidos/metabolismo , Sinalização do Cálcio/fisiologia , Ácido Egtázico/análogos & derivados , Canais de Potássio/fisiologia , Células de Sertoli/metabolismo , Testículo/metabolismo , Tri-Iodotironina/farmacologia , beta-Alanina/análogos & derivados , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Ácido Egtázico/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Células de Sertoli/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos , Tiroxina/farmacologia , Tolbutamida/farmacologia , Verapamil/farmacologia , beta-Alanina/metabolismo
19.
J Alzheimers Dis ; 29(1): 51-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22207005

RESUMO

Brain clearance of amyloid-ß (Aß42) by innate immune cells is necessary for maintenance of normal brain function. Phagocytosis of soluble Aß42 by Alzheimer's disease (AD) macrophages is defective, recovered in all "Type I and Type II" AD patients by 1α,25(OH)2-vitamin D3 (1,25D3) and blocked by the nuclear vitamin D receptor (VDR) antagonist (23S)-25-dehydro-1α(OH)-vitamin D3-26,23-lactone (MK). Bisdemethoxycurcumin (BDC) is a VDR ligand and additive with 1,25D3 in promoting Aß42 phagocytosis by Type I, but not by Type II macrophages. Here, we define the following intracellular mechanisms regulated by 1,25D3 that are associated with recovery of phagocytosis and consistent with the selectivity of BDC: 1) 1,25D3 potentiates a 4,4-diisothiocyanostilbene-2,2-disulfonic acid-sensitive chloride channel (i.e., ClC-3) currents in both Type I and II AD macrophages, but curcumin only potentiates the currents in Type I cells; 2) 1,25D3 is particularly effective in upregulating ClC-3 mRNA expression in Type II peripheral blood mononuclear cells (PBMCs) while both 1,25D3 and the BDC analog, C180, upregulate VDR mRNA, repressed by Aß42 in Type II PBMCs; and 3) 1,25D3-induced Aß42 phagocytosis is attenuated by the calcium-dependent ClC-3 blocker, inositol 3,4,5,6-tetraphosphate (IP4), in both AD Types and by the MEK1/2 inhibitor U0126 only in Type II macrophages. VDR hydrogen/deuterium exchange coupled mass spectrometry and computational results show differences between the abilities of 1,25D3 and curcuminoids to stabilize VDR helices associated with the regulation of gene transcription. The structure-function results provide evidence that 1,25D3 activation of VDR-dependent genomic and nongenomic signaling, work in concert to recover dysregulated innate immune function in AD.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Calcitriol/farmacologia , Genoma , Macrófagos/imunologia , Fagocitose , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Calcitriol/química , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Estrutura Secundária de Proteína , Transdução de Sinais
20.
Mol Endocrinol ; 25(8): 1289-300, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21659475

RESUMO

We have postulated that the vitamin D receptor (VDR) contains two overlapping ligand binding sites, a genomic pocket and an alternative pocket (AP), that mediate regulation of gene transcription and rapid responses, respectively. Flexible VDR + ligand docking calculations predict that the major blood metabolite, 25(OH)-vitamin D(3) (25D3), and curcumin (CM) bind more selectively to the VDR-AP when compared with the seco-steroid hormone 1α,25(OH)(2)-vitamin D(3) (1,25D3). In VDR wild-type-transfected COS-1 cells and TM4 Sertoli cells, 1,25D3, 25D3, and CM each trigger voltage-gated, outwardly rectifying chloride channel (ORCC) currents that can be blocked by the VDR antagonist 1ß,25(OH)(2)-vitamin D(3) and the chloride channel antagonist (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid). VDR mutational analysis in transfected COS-1 cells demonstrate the DNA-binding domain is not, but the ligand binding and hinge domains of the VDR are, required for 1,25D3 and 25D3 to activate the ORCC. Dose-response studies demonstrate that 25D3 and 1,25D3 are approximately equipotent in stimulating ORCC rapid responses, whereas 1 nm 1,25D3 was 1000-fold more potent than 25D3 and CM in stimulating gene expression. The VDR-AP agonist effects of 1,25D3, 25D3, and low-dose CM are lost after pretreatment of TM4 cells with VDR small interfering RNA. Collectively, these results are consistent with an essential role for the VDR-AP in initiating the signaling required for rapid opening of ORCC. The fact that 25D3 is equipotent to 1,25D3 in opening ORCC suggests that reconsideration of the ability of 25D3 to generate biological responses in vivo may be in order.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico , Receptores de Calcitriol/metabolismo , Animais , Sítios de Ligação , Células COS , Calcifediol/farmacologia , Chlorocebus aethiops , Curcumina/farmacologia , Sinergismo Farmacológico , Ergosterol/farmacologia , Genoma/genética , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ligantes , Masculino , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores de Calcitriol/química , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Relação Estrutura-Atividade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA