Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemphyschem ; 25(12): e202400074, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38517325

RESUMO

In the framework of the design, synthesis and testing of a library of copper complexes and nanostructured assemblies potentially endowed with antitumor and antiviral activity and useful for several applications, from drugs and related delivery systems to the development of biocidal nanomaterials, we present the detailed spectroscopic investigation of the molecular and electronic structure of copper-based coordination compounds and of a new conjugated system obtained by grafting Cu(I) complexes to gold nanorods. More in detail, the electronic and molecular structures of two Cu complexes and one AuNRs/Cu-complex adduct were investigated by X-ray photoelectron spectroscopy (XPS), synchrotron-induced XPS (SR-XPS) and near edge X-ray absorption spectroscopy (NEXAFS) in solid state, and the local structure around copper ion was assessed by X-ray absorption spectroscopy (XAS) both in solid state and water solution for the AuNRs/Cu-complex nanoparticles. The proposed multi-technique approach allowed to properly define the coordination geometry around the copper ion, as well as to ascertain the molecular structures of the coordination compounds, their stability and modifications upon interaction with gold nanoparticles, by comparing solid state and liquid phase data.

2.
Inorg Chem ; 63(16): 7255-7265, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38587285

RESUMO

Iron oxyhydroxide, a natural nanophase of iron found in the environment, plays a crucial role in regulating surface and groundwater composition. Recent research proposes that within the nonclassical prenucleation cluster growth model, subnanometer-sized clusters (olation clusters/Fe13 δ-Keggin oxolation clusters) might act as the prenucleation clusters (PNCs) of ferrihydrite or iron oxyhydroxide solid phase. However, these clusters are difficult to characterize as they are only observable momentarily in low-pH, high-Fe concentration solutions before agglomerating into extended solids, keeping the controversy over the true nature of the PNCs alive. In this study, we introduce large quantities of zinc acetate salt (ZA) into iron chloride solutions at the olation-oxolation boundary (3.6 mM Fe3+ at pH ∼2.6). Remarkably, this manipulation is found to alter the structural arrangement of these subnanometer clusters before blocking them in isolation for hours, even at pH 6, where extended iron oxyhydroxide phases typically precipitate. On the other hand, controlled addition of ZA allows partial unblocking, leading to anisotropic agglomeration into cylindrical rod-like structures. Experimental techniques such as synchrotron-based small-angle X-ray scattering, X-ray absorption spectroscopy, high-resolution transmission electron microscopy (TEM), and cryo-TEM, along with density functional theory (DFT) calculations, reveal the nature of the structural rearrangement and the crucial role of Zn2+ ions in cluster stabilization.

3.
Inorg Chem ; 62(30): 11966-11975, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37459483

RESUMO

The simultaneous presence of Fe3+ and As3+ ions in groundwater (higher ppb or lower ppm level concentrations at circumneutral pH) as well as in acid mine drainages (AMDs)/industrial wastewater (up to few thousand ppm concentration at strongly acidic pH) are quite common. Therefore, understanding the chemical interactions prevalent between Fe3+ and As3+ ions in aqueous medium leading to nucleation of ionic clusters/solids, followed by aggregation and growth, is of great environmental significance. In the present work, we attempt to probe the nucleation process of Fe3+-As3+ clusters in solutions of various concentrations and pHs (from AMD to groundwater-like) using a combination of experimental and theoretical techniques. Interestingly, our study reveals nucleation of primary FeAs clusters in nearly all of them independent of concentration or pH. Theoretical studies employed density functional theory (DFT) to predict the primary clusters as stable Fe4As4 units. The surprising resemblance of these clusters with known Fe3+-As3+ minerals at the local level was observed experimentally, which provides an important clue about solid-phase growth from a range of Fe3+-As3+ solutions. Our experimental findings are further supported by a stepwise reaction mechanism established from detailed DFT studies.

4.
Inorg Chem ; 61(12): 4919-4937, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285628

RESUMO

Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Indazóis , Ligantes , Estrutura Molecular
5.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36012662

RESUMO

Bis(pyrazol-1-yl)acetic acid (HC(pz)2COOH) and bis(3,5-dimethyl-pyrazol-1-yl)acetic acid (HC(pzMe2)2COOH) were converted into the methyl ester derivatives 1 (LOMe) and 2 (L2OMe), respectively, and were used for the preparation of Cu(I) and Cu(II) complexes 3-10. The copper(II) complexes were prepared by the reaction of CuCl2·2H2O or CuBr2 with ligands 1 and 2 in methanol solution. The copper(I) complexes were prepared by the reaction of Cu[(CH3CN)4]PF6 and 1,3,5-triaza-7-phosphaadamantane (PTA) or triphenylphosphine with LOMe and L2OMe in acetonitrile solution. Synchrotron radiation-based complementary techniques (XPS, NEXAFS, and XAS) were used to investigate the electronic and molecular structures of the complexes and the local structure around copper ions in selected Cu(I) and Cu(II) coordination compounds. All Cu(I) and Cu(II) complexes showed a significant in vitro antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human cancer cell lines, and were able to overcome cisplatin resistance. Noticeably, Cu complexes appeared much more effective than cisplatin in 3D spheroid cultures. Mechanistic studies revealed that the antitumor potential did not correlate with cellular accumulation but was consistent with intracellular targeting of PDI, ER stress, and paraptotic cell death induction.


Assuntos
Complexos de Coordenação , Cobre , Acetatos , Cisplatino , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cristalografia por Raios X , Ésteres/farmacologia , Humanos , Ligantes
6.
J Synchrotron Radiat ; 28(Pt 6): 1811-1819, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738934

RESUMO

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.


Assuntos
Oligoelementos , Ecossistema , Teste de Esforço , Humanos , Metais , Oligoelementos/análise , Espectroscopia por Absorção de Raios X
7.
Inorg Chem ; 58(8): 4935-4944, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30920816

RESUMO

Iron is an essential nutrient for nearly all forms of life, although scarcely available due to its poor solubility in nature and complex formation in higher eukaryotes. Microorganisms have evolved a vast array of strategies to acquire iron, the most common being the production of high-affinity iron chelators, termed siderophores. The opportunistic bacterial pathogen Pseudomonas aeruginosa synthesizes and secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), characterized by very different structural and functional properties. Due to its chemical similarity with Fe(III), Ga(III) interferes with several iron-dependent biological pathways. Both PVD and PCH bind Fe(III) and Ga(III). However, while the Ga-PCH complex is more effective than Ga(III) in inhibiting P. aeruginosa growth, PVD acts as a Ga(III) scavenger and protects bacteria from Ga(III) toxicity. To gain more insight into the different outcomes of the biological paths observed for the Fe(III) and Ga(III)-siderophore complexes, better knowledge is needed of their coordination geometries that directly influence the metal complexes chemical stability. The valence state and coordination geometry of the Ga-PCH and Fe-PCH complexes has recently been investigated in detail; as for PVD complexes, several NMR structural studies of Ga(III)-PVD are reported in the literature, using Ga(III) as a diamagnetic isosteric substitute for Fe(III). In this work, we applied up-to-date spectroscopic techniques as synchrotron-radiation-induced X-ray photoelectron spectroscopy (SR-XPS) and X-ray absorption fine structure (XAFS) spectroscopy coupled with molecular modeling to describe the electronic structure and coordination chemistry of Fe and Ga coordinative sites in PVD metal complexes. These techniques allowed us to unambiguously determine the oxidation state of the coordinative ions and to gather interesting information about the similarities and differences between the two coordination compounds as induced by the different metal.

8.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991199

RESUMO

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

9.
Environ Sci Technol ; 49(3): 1400-8, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25568986

RESUMO

Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.


Assuntos
Euphorbia/metabolismo , Raízes de Plantas/metabolismo , Zinco/metabolismo , Disponibilidade Biológica , Rizosfera , Silicatos/metabolismo , Espectroscopia por Absorção de Raios X , Difração de Raios X
10.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673123

RESUMO

Strong spin-orbit coupling (SOC) in iridates has long been predicted to lead to exotic electronic and magnetic ground states. Ba2YIrO6 (BYIO) has attracted particular attention due to the expectation of a Jeff = 0 state for Ir5+ ions under the jj-coupling scheme. However, controversies surround the actual realization of this state, as finite magnetic moments are consistently observed experimentally. We present a multi-physics study of this system by progressively introducing nonmagnetic Sb5+ ions in place of Ir5+ (Ba2YIr​1-ySb​yO​6, BYISO). Despite similar charge and ionic radii, Sb​5+ doping appears highly inhomogeneous, coexisting with a fraction of nearly pure BYIO regions, as confirmed by X-ray diffraction (XRD). This aligns with observations in related compounds. While inhomogeneity creates uncertainty, the doped majority phases offer valuable insights. It is relevant that the inclusion of even small amounts of Sb​5+ (10-20%) leads to a rise in magnetization. This strengthens our previous suggestion that magnetic Ir ions form dynamic singlets in BYIO, resulting in a near-nonmagnetic background. The observed moment enhancement with nonmagnetic doping supports the breakdown of these singlets. Furthermore, the magnetization steadily increases with an increasing Sb​5+ content, contradicting the anticipated approach towards the Jeff = 0 state with increased SOC due to reduced hopping between Ir​5+ ions. This reinforces the presence of individual Ir​5+ moments. Overall, our findings suggest that Ba​2YIrO​6 might not possess sufficiently strong SOC to be solely described within the jj-coupling picture, paving the way for further investigation.

11.
Sci Rep ; 14(1): 12529, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822019

RESUMO

The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20-150 nm), shape (spherical-octahedral), and crystalline length (8-35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs' TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.

12.
ACS Appl Nano Mater ; 7(2): 2401-2413, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38298253

RESUMO

Nanocellulose constitutes a sustainable and biobased solution both as an efficient sorbent material for water treatment and as support for other inorganic nanomaterials with sorbent properties. Herein, we report the synthesis of a nanocomposite by deposition of in situ-generated silver nanoparticles (AgNPs) onto TEMPO-oxidized cellulose nanofibers (TOCNFs). Following an in-depth analytical investigation, we unveil for the first time the key role of AgNPs in enhancing the adsorption efficiency of TOCNF toward Cd2+ ions, chosen as model heavy metal contaminants. The obtained nanocomposite shows a value of Cd2+ sorption capacity at equilibrium from 150 mg L-1 ion aqueous solutions of ∼116 mg g-1 against the value of 78 mg g-1 measured for TOCNF alone. A combination of field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS) analyses suggests that Cd2+ ions are mainly adsorbed in the neighborhood of AgNPs. However, XPS characterization allows us to conclude that the role of AgNPs relies on increasing the exposure of carboxylic groups with respect to the original TOCNF, suggesting that these groups are still responsible for absorption. In fact, X-ray absorption spectroscopy (XAS) analysis of the Cd-K edge excludes a direct interaction between Ag0 and Cd2+, supporting the XPS results and confirming the coordination of the latter with carboxyl groups.

13.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38831692

RESUMO

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Assuntos
Adamantano , Antineoplásicos , Complexos de Coordenação , Cobre , Glioblastoma , Humanos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Ligantes , Adamantano/farmacologia , Adamantano/química , Adamantano/síntese química , Adamantano/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Quelantes/química , Quelantes/farmacologia , Quelantes/síntese química , Relação Estrutura-Atividade , Acetatos/química , Acetatos/farmacologia , Acetatos/síntese química
14.
ACS Nano ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898819

RESUMO

The desire to commercialize perovskite solar cells continues to mount, motivating the development of scalable production. Evaluations of the impact of open-air processing have revealed a variety of physical changes in the fabricated devices─with few changes having the capacity to be functionalized. Here, we highlight the beneficial role of ambient oxygen during the open-air thermal processing of metastable γ-CsPbI3-based perovskite thin films and devices. Physiochemical-sensitive probes elucidate oxygen intercalation and the formation of Pb-O bonds in the CsPbI3 crystal, entering via iodine vacancies at the surface, creating superoxide (O2-) through electron transfer reactions with molecular oxygen, which drives the formation of a zero-dimensional Cs4PbI6 capping layer during annealing (>330 °C). The chemical conversion permanently alters the film structure, helping to shield the subsurface perovskite from moisture and introduces lattice anchoring sites, stabilizing otherwise unstable γ-CsPbI3 films. This functional modification is demonstrated in γ-CsPbI2Br perovskite solar cells, boosting the operational stability and photoconversion efficiency of champion devices from 12.7 to 15.4% when annealed in dry air. Such findings prompt a reconsideration of glovebox-based perovskite solar cell research and establish a scenario where device fabrication can in fact greatly benefit from ambient oxygen.

15.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068075

RESUMO

The present review places emphasis on a comprehensive survey of experimental techniques to probe the structural and morphological features at the nanoscale range in thin magnetic films, incorporating those available at in-house laboratories as well as those at state-of-the-art synchrotron radiation facilities. This elucidating the range of available techniques, and the information they can yield represents a step for advancing the understanding of and for unlocking new possibilities in the design and optimization of thin magnetic films across a wide range of applications.

16.
J Phys Condens Matter ; 35(44)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487492

RESUMO

In the present work Fe3+sublattice spin reversal and Fe3+spin-canting across the magnetic compensation temperature (TComp) are demonstrated in polycrystalline Y1.5Gd1.5Fe5O12(YGdIG) by means of in-field57FeMössbauer spectroscopy measurements. Corroborating in-field57FeMössbauer measurements, both Fe3+& Gd3+sublattice spin reversal has also been manifested in hard x-ray magnetic circular dichroism (XMCD) measurements. From in-field57FeMössbauer measurements, estimation and analysis of effective internal hyperfine field (Heff), relative intensity of absorption lines in a sextet elucidated unambiguously the signatures of Fe3+spin reversal and field induced spin-canting of Fe3+sublattices across TComp. Gd L3-edge XMCD signal is observed to consist of an additional spectral feature, identified as Fe3+magnetic contribution to XMCD spectra of Gd L3-edge, enabling us the extraction of both the sublattices (Fe3+& Gd3+) information from a single absorption edge analysis. The evolution of the XMCD amplitudes, which is proportional to magnetic moments, as a function of temperature for both magnetic sublattices extracted at the Gd L3-edge reasonably match with values that are extracted from bulk magnetization data of YGdIG and YIG (Y3Fe5O12) and corresponding Fe K-edge XMCD amplitudes for Fe contribution. These measurements pave new avenues to investigate how the magnetic behavior of such complex system acts across the compensation point.

17.
Nanoscale Adv ; 5(15): 3924-3933, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37496614

RESUMO

Gold nanorods stabilized by binary ligand mixtures of cetyltrimethylammonium bromide (CTAB, primary ligand) and ascorbic acid or hydroquinone were investigated by complementary synchrotron radiation-induced spectroscopies and microscopies, with the aim to find evidence of the influence of the secondary ligand molecular and chemical structure on the nanorod shapes and size ratios. Indeed, as it is well known that the CTAB interaction with Ag(i) ions at the NR surface plays a key role in directing the anisotropic growth of nanorods, the possibility to finely control the NR shape and dimension by opportunely selecting the secondary ligands opens new perspectives in the design and synthesis of anisotropic nanoparticles.

18.
mBio ; : e0203923, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843294

RESUMO

In its canonical interpretation, quorum sensing (QS) allows single cells in a bacterial population to synchronize gene expression and hence perform specific tasks collectively once the quorum cell density is reached. However, growing evidence in different bacterial species indicates that considerable cell-to-cell variation in the QS activation state occurs during growth, often resulting in coexisting subpopulations of cells in which QS is active (quorate cells) or inactive (non-quorate cells). Heterogeneity has been observed in the las QS system of the opportunistic pathogen Pseudomonas aeruginosa. However, the molecular mechanisms underlying this phenomenon have not yet been defined. The las QS system consists of an incoherent feedforward loop in which the LasR transcriptional regulator activates the expression of the lasI synthase gene and rsaL, coding for the lasI transcriptional repressor RsaL. Here, single-cell-level gene expression analyses performed in ad hoc engineered biosensor strains and deletion mutants revealed that direct binding of RsaL to the lasI promoter region increases heterogeneous activation of the las QS system. Experiments performed with a dual-fluorescence reporter system showed that the LasR-dependent expression of lasI and rsaL does not correlate in single cells, indicating that RsaL acts as a brake that stochastically limits the transition of non-quorate cells to the quorate state in a subpopulation of cells expressing high levels of this negative regulator. Interestingly, the rhl QS system that is not controlled by an analogous RsaL protein showed higher homogeneity with respect to the las system. IMPORTANCE Single-cell analyses can reveal that despite experiencing identical physico-chemical conditions, individual bacterial cells within a monoclonal population may exhibit variations in gene expression. Such phenotypic heterogeneity has been described for several aspects of bacterial physiology, including QS activation. This study demonstrates that the transition of non-quorate cells to the quorate state is a graded process that does not occur at a specific cell density and that subpopulations of non-quorate cells also persist at high cell density. Here, we provide a mechanistic explanation for this phenomenon, showing that a negative feedback regulatory loop integrated into the las system has a pivotal role in promoting cell-to-cell variation in the QS activation state and in limiting the transition of non-quorate cells to the quorate state in P. aeruginosa.

19.
Sci Total Environ ; 870: 161931, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36736402

RESUMO

Juncus acutus has been proposed as a suitable species for the design of phytoremediation plans. This research aimed to investigate the role played by rhizosphere minerals and water composition on Zn transformations and dynamics in the rhizosphere-plant system of J. acutus exposed to different Zn sources. Rhizobox experiments were conducted using three different growing substrates (Zn from 137 to 20,400 mg/kg), and two irrigation lines (Zn 0.05 and 180 mg/l). The plant growth was affected by the substrate type, whereas the Zn content in the water did not significantly influence the plant height for a specific substrate. J. acutus accumulated Zn mainly in roots (up to 10,000 mg/kg dw); the metal supply by the water led to variable increases in the total Zn concentration in the vegetal organs, and different Zn distributions both controlled by the rhizosphere mineral composition. Different Zn complexation mechanisms were observed, mainly driven by cysteine and citrate compounds, whose amount increased linearly with Zn content in water, but differently for each of the investigated systems. Our study contributes to gain a more complete picture of the Zn pathway in the rhizosphere-plant system of J. acutus. We demonstrated that this vegetal species is not only capable of developing site-specific tolerance mechanisms, but it is also capable to differently modulate Zn transformation when Zn is additionally supplied by watering. These findings are necessary for predicting the fate of Zn during phytoremediation of sites characterized by specific mineralogical properties and subject to water chemical variations.


Assuntos
Metais , Poluentes do Solo , Metais/análise , Plantas/metabolismo , Biodegradação Ambiental , Minerais/análise , Zinco/análise , Água/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Rizosfera
20.
Langmuir ; 28(22): 8511-7, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22568745

RESUMO

The inclusion properties of a calixarene-based porous material have been studied to investigate the adsorption and the desorption of carbon tetrachloride, chloroform, and water in the zeolite-like structure. Uptake and release processes have been studied both by time-resolved powder X-ray diffraction and by thermogravimetric analysis to obtain structural and kinetic information. The selected guests are able to enter the structure with an increase in the host cell volume and with time-dependent diffusivity coefficients. Chloroform molecules act as a permanent porosity switch promoting a phase transition to non-porous triclinic form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA