Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 105: 15-26, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35714916

RESUMO

Autism spectrum disorder (ASD) is a neurological and developmental disorder accompanied by gut dysbiosis and gastrointestinal symptoms in most cases. However, the development of the autism-related gut microbiota and its relationship with intestinal dysfunction in ASD remain unclear. Using a valproic acid (VPA)-induced ASD mouse model, we showed a congenitally immature intestine of VPA-exposed mice accompanied by prominent oxidative stress and inflammation. Of note, the gut microbiota composition of VPA-exposed mice resembled that of control mice within 24 h after birth; however, their gut microbiota compositions differed on postnatal days 7 and 21. Oral administration of superoxide dismutase (SOD) to attenuate intestinal oxidative stress either before weaning or during juvenile restored the autism-associated gut microbiota, leading to the amelioration of autism-related behaviors. These findings collectively suggest the congenitally underdeveloped intestine as an early driving force shaping the autism-associated gut microbiota and host neurodevelopment through enhancing oxidative stress.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Disbiose , Intestinos , Camundongos , Ácido Valproico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA