Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 666: 529-539, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38613975

RESUMO

Elastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved. The existance of zinc ions also significantly improved the carbon retention rate and inhibited structural shrinkage, thus making the carbon aerogels retain ultra-high elasticity and fatigue resistance after compression. Moreover, the carbon aerogel possessed excellent piezoresistive pressure sensing performance with a wide detection range of 0-7.8 kPa, high sensitivity of 11.04 kpa-1, low detection limit (2 % strain), fast response (112 ms), and good durability (over 1,000 cycles). Based on these excellent properties, the carbon aerogel pressure sensors were further successfully used for human motion monitoring, from joint motion to and speech recognition.


Assuntos
Alginatos , Carbono , Celulose , Elasticidade , Géis , Dispositivos Eletrônicos Vestíveis , Carbono/química , Géis/química , Humanos , Celulose/química , Alginatos/química , Anisotropia , Tamanho da Partícula , Propriedades de Superfície , Zinco/química
2.
J Colloid Interface Sci ; 661: 879-887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330660

RESUMO

Improving mechanical strength and frost-resistance is an important research direction in the field of hydrogel materials. Herein, using bacterial nanocellulose (BC) as a reinforcing agent and polyvinyl alcohol (PVA) as a polymer matrix, a frost-resistant organohydrogel was constructed via the freezing-thawing method in a new binary solvent system of N, N-dimethylformamide and water (DMF-H2O), which was designed according to the Hansen Solubility Parameter. Owing to the solvent-induced crystallization effect that led to the enhanced 3D hydrogen bonding network during the freezing-thawing process, the optimal organohydrogel achieved excellent mechanical properties with the tensile strength of 2,974 kPa and the stretchability of 277 % at room temperature, respectively. In the visiblelight range, the organohydrogel demonstrated high transmittance. Moreover, the presence of a DMF-H2O binary solvent endows it with frost-resistance, retaining the tensile strength of 508 kPa and a stretchability of 190 % even at -70 °C, respectively. This kind of transparent, frost-resistant organohydrogel has potential uses in harsh settings due to its great mechanical strength.

3.
Int J Biol Macromol ; 277(Pt 2): 134277, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089537

RESUMO

The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.


Assuntos
Celulose , Vermelho Congo , Estruturas Metalorgânicas , Celulose/química , Estruturas Metalorgânicas/química , Vermelho Congo/química , Vermelho Congo/isolamento & purificação , Adsorção , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Nanofibras/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Zircônio/química , Bactérias
4.
Int J Biol Macromol ; 249: 125958, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37499715

RESUMO

Elastic and hydrophobic aerogels have received a lot of attention in dealing with the increasing oil pollution due to their recyclable properties. Herein, we present an ultralight and superelastic aerogel with highly oriented polygon structure based on chitin nanofibril (ChNF) and chitosan (CS) by directional freezing. The chemical cross-linking enables good mechanical strength at low aerogel density. After 500 compression-release cycles, the aerogel can retain the deformation recovery rate of 88 % in air, demonstrating the excellent resilience. The bio-based aerogel has high absorption capacity (52-114 g/g) for various oils and organic solvents, and it is able to achieve the absorption retention of 90 % even after 20 absorption-extrusion cycles. Moreover, owing to the good elasticity, the pore size of the aerogel can be adjusted by compression to selectively separate water-in-oil emulsions of different particle sizes with separation efficiencies higher than 99.5 %. The bio-based aerogel with good cycle performance has broad application prospects in the field of oil-water separation.


Assuntos
Quitosana , Quitina , Óleos/química , Solventes , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA