Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 14: 189, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546412

RESUMO

BACKGROUND: Temozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 µM). METHODS: MGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 µM. Clonogenic GSC surviving 500 µM TMZ (GSC-500 µM TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC. RESULTS: The molecular signatures characterized an activation of protective stress responses in GSC-500 µM TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 µM TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 µM TMZ and GSC-parental to 35 µM TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489). CONCLUSIONS: These data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Metilases de Modificação do DNA/metabolismo , Dacarbazina/análogos & derivados , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Guanina/análogos & derivados , Células-Tronco Neoplásicas/enzimologia , Antineoplásicos Alquilantes , Proteína Morfogenética Óssea 7/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilases de Modificação do DNA/genética , Dacarbazina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Guanina/metabolismo , Humanos , Células-Tronco Neoplásicas/metabolismo , Temozolomida , Células Tumorais Cultivadas
2.
PLoS One ; 10(10): e0141334, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26506620

RESUMO

Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/biossíntese , Glioblastoma/genética , Proteínas Ribossômicas/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Prognóstico , Proteínas Ribossômicas/genética , Análise Serial de Tecidos
3.
PLoS One ; 8(11): e80397, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260384

RESUMO

Glioblastoma stem cells (GSC) are a significant cell model for explaining brain tumor recurrence. However, mechanisms underlying their radiochemoresistance remain obscure. Here we show that most clonogenic cells in GSC cultures are sensitive to radiation treatment (RT) with or without temozolomide (TMZ). Only a few single cells survive treatment and regain their self-repopulating capacity. Cells re-populated from treatment-resistant GSC clones contain more clonogenic cells compared to those grown from treatment-sensitive GSC clones, and repeated treatment cycles rapidly enriched clonogenic survival. When compared to sensitive clones, resistant clones exhibited slower tumor development in animals. Upregulated genes identified in resistant clones via comparative expression microarray analysis characterized cells under metabolic stress, including blocked glucose uptake, impaired insulin/Akt signaling, enhanced lipid catabolism and oxidative stress, and suppressed growth and inflammation. Moreover, many upregulated genes highlighted maintenance and repair activities, including detoxifying lipid peroxidation products, activating lysosomal autophagy/ubiquitin-proteasome pathways, and enhancing telomere maintenance and DNA repair, closely resembling the anti-aging effects of caloric/glucose restriction (CR/GR), a nutritional intervention that is known to increase lifespan and stress resistance in model organisms. Although treatment-introduced genetic mutations were detected in resistant clones, all resistant and sensitive clones were subclassified to either proneural (PN) or mesenchymal (MES) glioblastoma subtype based on their expression profiles. Functional assays demonstrated the association of treatment resistance with energy stress, including reduced glucose uptake, fatty acid oxidation (FAO)-dependent ATP maintenance, elevated reactive oxygen species (ROS) production and autophagic activity, and increased AMPK activity and NAD(+) levels accompanied by upregulated mRNA levels of SIRT1/PGC-1α axis and DNA repair genes. These data support the view that treatment resistance may arise from quiescent GSC exhibiting a GR-like phenotype, and suggest that targeting stress response pathways of resistant GSC may provide a novel strategy in combination with standard treatment for glioblastoma.


Assuntos
Adaptação Fisiológica/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Células-Tronco/metabolismo , Estresse Fisiológico/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Expressão Gênica/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Humanos , Transdução de Sinais/genética , Temozolomida , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA