Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Genet Genomics ; 293(1): 129-136, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28913560

RESUMO

The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase in BMI and amount of SATa.


Assuntos
Regulação da Expressão Gênica/genética , Gordura Intra-Abdominal/metabolismo , Obesidade/genética , Gordura Subcutânea/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Índice de Massa Corporal , Feminino , Humanos , Gordura Intra-Abdominal/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Biossíntese de Proteínas/genética , Gordura Subcutânea/crescimento & desenvolvimento , Suínos/genética , Suínos/crescimento & desenvolvimento , Suínos/metabolismo
2.
Mamm Genome ; 28(5-6): 166-175, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396939

RESUMO

In human health, there is interest in developing specific diets to reduce body weight. These studies are mainly focused on phenotypic changes induced in blood measurements, i.e., triglycerides, HDL, LDL, and insulin, and on physical changes, i.e., body weight and BMI. To evaluate the biological impact of diet interventions, it is very important to investigate the molecular mechanisms driving the diet-induced phenotypic changes in relevant tissues. However, studying these effects in humans is difficult due to ethical concerns in doing interventions and obtaining tissue samples and good animal models are therefore needed. Göttingen minipigs, a small size obesity prone pig breed, have previously been shown to be a useful translational animal model for metabolic studies. In this study, 16 Göttingen minipig males (2-month old) were submitted to 13 weeks of differential diets to investigate the initial stages of diet-induced metabolic changes. Half of them were fed a high-fat/cholesterol, low-carbohydrate (HFLC) diet, and the other half were fed a low- fat/cholesterol, high-carbohydrate (LFHC) diet. After 13 weeks, the HFLC group weighted less and had dyslipidemia compared to the LFHC group. Liver, pancreas, and adipose tissues were collected at slaughter. Gene expression profiling of 83 metabolism-relevant genes was performed using high-throughput qPCR. In total, 41 genes were deregulated in at least one of the five tissues analyzed, with liver being the most drastically affected tissue. The new knowledge gained in this study could potentially be of value for considering direct modulation of gene expression by nutrient content in the diet.


Assuntos
Metabolismo dos Carboidratos/genética , Gorduras na Dieta/metabolismo , Obesidade/metabolismo , Porco Miniatura/metabolismo , Animais , Colesterol/metabolismo , Dieta com Restrição de Gorduras , Humanos , Insulina/metabolismo , Obesidade/genética , Suínos , Porco Miniatura/genética , Triglicerídeos/metabolismo
3.
Gut Microbes ; 15(1): 2208504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37150906

RESUMO

Probiotics are intended to improve gastrointestinal health when consumed. However, the probiotics marketed today only colonize the densely populated gut to a limited extent. Bacteriophages comprise the majority of viruses in the human gut virome and there are strong indications that they play important roles in shaping the gut microbiome. Here, we investigate the use of fecal virome transplantation (FVT, sterile filtrated feces) as a mean to alter the gut microbiome composition to lead the way for persistent colonization of two types of probiotics: Lacticaseibacillus rhamnosus GG (LGG) representing a well-established probiotic and Akkermansia muciniphila (AKM) representing a putative next-generation probiotic. Male and female C57BL/6NTac mice were cohoused in pairs from 4 weeks of age and received the following treatment by oral gavage at week 5 and 6: AKM+FVT, LGG+FVT, probiotic sham (Pro-sham)+FVT, LGG+Saline, AKM+Saline, and control (Pro-sham+Saline). The FVT donor material originated from mice with high relative abundance of A. muciniphila. All animals were terminated at age 9 weeks. The FVT treatment did not increase the relative abundance of the administered LGG or AKM in the recipient mice. Instead FVT significantly (p < 0.05) increased the abundance of naturally occurring A. muciniphila compared to the control. This highlights the potential of propagating the existing commensal "probiotics" that have already permanently colonized the gut. Being co-housed male and female, a fraction of the female mice became pregnant. Unexpectedly, the FVT treated mice were found to have a significantly (p < 0.05) higher fertility rate independent of probiotic administration. These preliminary observations urge for follow-up studies investigating interactions between the gut microbiome and fertility.


Assuntos
Microbioma Gastrointestinal , Gravidez , Masculino , Humanos , Feminino , Camundongos , Animais , Lactente , Viroma , Coeficiente de Natalidade , Camundongos Endogâmicos C57BL , Verrucomicrobia , Fezes , Proliferação de Células
4.
Endocr Connect ; 9(8): 755-768, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32688339

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased dramatically worldwide and, subsequently, also the risk of developing non-alcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis and cancer. Today, weight loss is the only available treatment, but administration of fibroblast growth factor 21 (FGF21) analogues have, in addition to weight loss, shown improvements on liver metabolic health but the mechanisms behind are not entirely clear. The aim of this study was to investigate the hepatic metabolic profile in response to FGF21 treatment. Diet-induced obese (DIO) mice were treated with s.c. administration of FGF21 or subjected to caloric restriction by switching from high fat diet (HFD) to chow to induce 20% weight loss and changes were compared to vehicle dosed DIO mice. Cumulative caloric intake was reduced by chow, while no differences were observed between FGF21 and vehicle dosed mice. The body weight loss in both treatment groups was associated with reduced body fat mass and hepatic triglycerides (TG), while hepatic cholesterol was slightly decreased by chow. Liver glycogen was decreased by FGF21 and increased by chow. The hepatic gene expression profiles suggest that FGF21 increased uptake of fatty acids and lipoproteins, channeled TGs toward the production of cholesterol and bile acid, reduced lipogenesis and increased hepatic glucose output. Furthermore, FGF21 appeared to reduce inflammation and regulate hepatic leptin receptor-a expression. In conclusion, FGF21 affected several metabolic pathways to reduce hepatic steatosis and improve hepatic health and markedly more genes than diet restriction (61 vs 16 out of 89 investigated genes).

5.
Front Genet ; 10: 1268, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921306

RESUMO

Reprogramming of adipocyte function in obesity is implicated in metabolic disorders like type 2 diabetes. Here, we used the pig, an animal model sharing many physiological and pathophysiological similarities with humans, to perform in-depth epigenomic and transcriptomic characterization of pure adipocyte fractions. Using a combined DNA methylation capture sequencing and Reduced Representation bisulfite sequencing (RRBS) strategy in 11 lean and 12 obese pigs, we identified in 3529 differentially methylated regions (DMRs) located at close proximity to-, or within genes in the adipocytes. By sequencing of the transcriptome from the same fraction of isolated adipocytes, we identified 276 differentially expressed transcripts with at least one or more DMR. These transcripts were over-represented in gene pathways related to MAPK, metabolic and insulin signaling. Using a candidate gene approach, we further characterized 13 genes potentially regulated by DNA methylation and identified putative transcription factor binding sites that could be affected by the differential methylation in obesity. Our data constitute a valuable resource for further investigations aiming to delineate the epigenetic etiology of metabolic disorders.

6.
PLoS One ; 11(11): e0167285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27902747

RESUMO

Obesity and its comorbidities are an increasing challenge for both affected individuals and health care systems, worldwide. In obese individuals, perturbation of expression of both protein-coding genes and microRNAs (miRNA) are seen in obesity-relevant tissues (i.e. adipose tissue, liver and skeletal muscle). miRNAs are small non-coding RNA molecules which have important regulatory roles in a wide range of biological processes, including obesity. Rodents are widely used animal models for human diseases including obesity. However, not all research is applicable for human health or diseases. In contrast, pigs are emerging as an excellent animal model for obesity studies, due to their similarities in their metabolism, their digestive tract and their genetics, when compared to humans. The Göttingen minipig is a small sized easy-to-handle pig breed which has been extensively used for modeling human obesity, due to its capacity to develop severe obesity when fed ad libitum. The aim of this study was to identify differentially expressed of protein-coding genes and miRNAs in a Göttingen minipig obesity model. Liver, skeletal muscle and abdominal adipose tissue were sampled from 7 lean and 7 obese minipigs. Differential gene expression was investigated using high-throughput quantitative real-time PCR (qPCR) on 90 mRNAs and 72 miRNAs. The results revealed de-regulation of several obesity and inflammation-relevant protein-coding genes and miRNAs in all tissues examined. Many genes that are known to be de-regulated in obese humans were confirmed in the obese minipigs and several of these genes have target sites for miRNAs expressed in the opposing direction of the gene, confirming miRNA-mediated regulation in obesity. These results confirm the translational value of the pig for human obesity studies.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , Obesidade/genética , Porco Miniatura , Animais , Modelos Animais de Doenças , Feminino , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
7.
J Diabetes Res ; 2016: 8539057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798656

RESUMO

Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.


Assuntos
Linfócitos B/metabolismo , Metilação de DNA , Epigênese Genética , Mediadores da Inflamação/sangue , Gordura Intra-Abdominal/metabolismo , Lipídeos/sangue , Obesidade/genética , Paniculite/genética , Linfócitos T/metabolismo , Adiposidade , Animais , Linfócitos B/imunologia , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gordura Intra-Abdominal/imunologia , Masculino , Obesidade/sangue , Obesidade/imunologia , Paniculite/sangue , Paniculite/imunologia , Suínos , Linfócitos T/imunologia , Fatores de Tempo
8.
PLoS One ; 10(7): e0131650, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222688

RESUMO

Obesity is a complex condition that increases the risk of life threatening diseases such as cardiovascular disease and diabetes. Studying the gene regulation of obesity is important for understanding the molecular mechanisms behind the obesity derived diseases and may lead to better intervention and treatment plans. MicroRNAs (miRNAs) are short non-coding RNAs regulating target mRNA by binding to their 3'UTR. They are involved in numerous biological processes and diseases, including obesity. In this study we use a mixed breed pig model designed for obesity studies to investigate differentially expressed miRNAs in subcutaneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are included to explore gender differences. The RNAseq study shows that the most highly expressed miRNAs are in accordance with comparable studies in pigs and humans. A total of six miRNAs are differentially expressed in subcutaneous adipose tissue between the lean and obese group of pigs, and in addition gender specific significant differential expression is observed for a number of miRNAs. The differentially expressed miRNAs have been verified using qPCR. The results of these studies in general confirm the trends found by RNAseq. Mir-9 and mir-124a are significantly differentially expressed with large fold changes in subcutaneous adipose tissue between lean and obese pigs. Mir-9 is more highly expressed in the obese pigs with a fold change of 10 and a p-value < 0.001. Mir-124a is more highly expressed in the obese pigs with a fold change of 114 and a p-value < 0.001. In addition, mir-124a is significantly higher expressed in abdominal adipose tissue in male pigs with a fold change of 119 and a p-value < 0.05. Both miRNAs are also significantly higher expressed in the liver of obese male pigs where mir-124a has a fold change of 12 and mir-9 has a fold change of 1.6, both with p-values < 0.05.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/biossíntese , Obesidade/metabolismo , Caracteres Sexuais , Gordura Subcutânea Abdominal/metabolismo , Animais , Feminino , Masculino , MicroRNAs/genética , Obesidade/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA